Skip to main content
Log in

Two commercially available initiators for the retarded ring-opening metathesis polymerization of dicyclopentadiene

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The highly cross-linked thermoset poly(dicyclopentadiene) (pDCPD) is produced by ring-opening metathesis polymerization and has become an important material for many high-impact applications. Herein, the utility of two less common, yet commercially available ruthenium-based initiators M2 and M22 is disclosed for the polymerization of dicyclopentadiene and compared with the second generation Grubbs catalyst G2. Both initiators are suited to produce pDCPD pieces in high quality (as revealed from mechanical properties of test specimen) and offer a distinctly longer processing window than the reference initiator G2.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. During the heating run, DCPD decomposes via a retro-Diels–Alder reaction, yielding volatile cyclopentadiene, which is removed by the gas stream applied during the STA measurement. The decomposition reaction can be observed by an endothermic peak of DSC signal and by a continuous mass loss. The decomposition temperature was 69 °C (3 % mass loss at this temperature) under the measurement conditions (see ESI). In real life applications (e.g. RIM) typically closed moulds are used and an according mass loss does not occur under these conditions.

References

  1. Bielawski CW, Grubbs RH (2007) Prog Polym Sci 32:1

    Article  CAS  Google Scholar 

  2. Leitgeb A, Wappel J, Slugovc C (2010) Polymer 51:2927

    Article  CAS  Google Scholar 

  3. Mol JC (2004) J Mol Catal Part A Chem 213:39

    Article  CAS  Google Scholar 

  4. Trimmer MS (2003) Handbook of metathesis, vol 3. Wiley, Weinheim, p 407

    Book  Google Scholar 

  5. Nickel A, Edgecombe BD (2012) Polymer science: a comprehensive reference, vol 4. Elsevier, Amsterdam, p 749

    Google Scholar 

  6. Le Gac PY, Choqueuse D, Paris M, Recher G, Zimmer C, Melot D (2013) Polym Degrad Stabil 98:809

    Article  Google Scholar 

  7. Cui H, Kessler MR (2012) Compos Sci Technol 72:1264

    Article  CAS  Google Scholar 

  8. Jeong W, Kessler MR (2008) Chem Mater 20:7060

    Article  CAS  Google Scholar 

  9. Perring M, Bowden NB (2008) Langmuir 24:10480

    Article  CAS  Google Scholar 

  10. Perring M, Long TR, Bowden NB (2010) J Mater Chem 20:8679

    CAS  Google Scholar 

  11. Long TR, Gupta A, Miller AL II, Rethwisch DG, Bowden NB (2011) J Mater Chem 21:14265

    CAS  Google Scholar 

  12. Gupta A, Long TR, Rethwisch DG, Bowden NB (2011) Chem Commun 47:10236

    Article  CAS  Google Scholar 

  13. Gupta A, Bowden NB (2013) ACS Appl Mater Interfaces 5:924

    CAS  Google Scholar 

  14. Amendt MA, Chen L, Hillmyer MA (2010) Macromolecules 43:3924

    Article  CAS  Google Scholar 

  15. Amendt MA, Roerdink M, Moench S, Phillip WA, Cussler EL, Hillmyer MA (2011) Aust J Chem 64:1074

    Article  CAS  Google Scholar 

  16. Kim SH, Worsley MA, Valdez CA, Shin SJ, Dawedeit C, Braun T, Baumann TF, Letts SA, Kucheyev SO, Wu KJJ, Biener J, Satcher JH Jr, Hamza AV (2012) RSC Adv 2:8672

    Article  CAS  Google Scholar 

  17. Mohite DP, Mahadik-Khanolkar S, Luo H, Lu H, Sotiriou-Leventis C, Leventis N (2013) Soft Matter 9:1516

    Article  CAS  Google Scholar 

  18. Lenhardt JM, Kim SH, Nelson AJ, Singhal P, Baumann TF, Sather JH Jr (2013) Polymer 54:542

    Article  CAS  Google Scholar 

  19. Bian P, McCarthy TJ (2010) Langmuir 26:6145

    Article  CAS  Google Scholar 

  20. Bellan LM, Coates GW, Craighead HG (2006) Macromol Rapid Commun 27:511

    Article  CAS  Google Scholar 

  21. Kovačič S, Krajnc P, Slugovc C (2010) Chem Commun 46:7504

    Article  Google Scholar 

  22. Kovačič S, Jeřabek K, Krajnc P, Slugovc C (2012) Polym Chem 3:325

    Article  Google Scholar 

  23. Kovačič S, Matsko NB, Jeřabek K, Krajnc P, Slugovc C (2013) J Mater Chem A 1:487

    Article  Google Scholar 

  24. Kovačič S, Kren H, Krajnc P, Koller S, Slugovc C (2013) Macromol Rapid Commun 34:581

    Article  Google Scholar 

  25. Kovačič S, Matsko NB, Ferk G, Slugovc C (2013) J Mater Chem A 1:7971

    Article  Google Scholar 

  26. Kovačič S, Hollauf M, Reishofer DP, Saf R, Slugovc C (2013) Chem Commun 49:7325

    Article  Google Scholar 

  27. Vidavsky Y, Anaby A, Lemcoff NG (2012) Dalton Trans 41:32

    Article  CAS  Google Scholar 

  28. Monsaert S, Lozano Vila A, Drozdzak R, Van Der Voort P, Verpoort F (2009) Chem Soc Rev 38:3360

  29. Leitgeb A, Abbas M, Fischer RC, Poater A, Cavallo L, Slugovc C (2012) Catal Sci Technol 2:1640

    Article  CAS  Google Scholar 

  30. Leitgeb A, Szadkowska A, Michalak M, Barbasiewicz M, Grela K, Slugovc C (2011) J Polym Sci, Part A: Polym Chem 49:3448

    Article  CAS  Google Scholar 

  31. Szadkowska A, Gstrein X, Burtscher D, Jarzembska K, Wozniak K, Slugovc C, Grela K (2010) Organometallics 29:117

    Article  CAS  Google Scholar 

  32. Leitgeb A, Mereiter K, Slugovc C (2012) Monatsh Chem 143:901

    Article  CAS  Google Scholar 

  33. Keitz BK, Grubbs RH (2009) J Am Chem Soc 131:2038

    Article  CAS  Google Scholar 

  34. Wang D, Wurst K, Knolle W, Decker U, Prager L, Naumov S, Buchmeiser MR (2008) Angew Chem Int Ed 47:3267

    Article  CAS  Google Scholar 

  35. Wang D, Wurst K, Buchmeiser MR (2010) Chem Eur J 16:12928

    Article  CAS  Google Scholar 

  36. Piermattei A, Karthikeyan S, Sijbesma RP (2009) Nat Chem 1:133

    CAS  Google Scholar 

  37. Zirngast M, Pump E, Leitgeb A, Albering JH, Slugovc C (2011) Chem Commun 47:2261

    Article  CAS  Google Scholar 

  38. Fürstner A, Grabowski J, Lehmann CW (1999) J Org Chem 64:8275

    Article  Google Scholar 

  39. Jafarpour L, Schanz H-J, Stevens ED, Nolan SP (1999) Organometallics 18:5416

    Article  CAS  Google Scholar 

  40. Bantreil X, Schmid TE, Randall RAM, Slawin AMZ, Cazin CSJ (2010) Chem Commun 46:7115

    Article  CAS  Google Scholar 

  41. Bantreil X, Poater A, Urbina-Blanco CA, Bidal YD, Falivene L, Randall RAM, Cavallo L, Slawin AMZ, Cazin CSJ (2012) Organometallics 31:7415

    Article  CAS  Google Scholar 

  42. Yang G, Lee JK (2014) Ind Eng Chem Res 53:3001

    Article  CAS  Google Scholar 

  43. Polymer material property database EFUNDA. http://www.efunda.com/materials/polymers/properties/polymer_datasheet.cfm?MajorID=PDCP&MinorID=1

  44. Broggi J, Urbina-Blanco CA, Clavier H, Leitgeb A, Slugovc C, Slawin AMZ, Nolan SP (2010) Chem Eur J 16:9215

    Article  CAS  Google Scholar 

  45. Urbina-Blanco CA, Bantreil X, Wappel J, Schmid TE, Slawin AMZ, Slugovc C, Cazin CSJ (2013) Organometallics 32:6240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the EC (CP-FP 211468-2 EUMET) and the Royal Society (University Research Fellowship to C.S.J.C.) for financial support, and Umicore for the gift of Ru complexes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Catherine S. J. Cazin or Christian Slugovc.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 611 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitgeb, A., Wappel, J., Urbina-Blanco, C.A. et al. Two commercially available initiators for the retarded ring-opening metathesis polymerization of dicyclopentadiene. Monatsh Chem 145, 1513–1517 (2014). https://doi.org/10.1007/s00706-014-1249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1249-y

Keywords

Navigation