Monatshefte für Chemie - Chemical Monthly

, Volume 145, Issue 10, pp 1583–1594 | Cite as

Benign synthesis of the unsymmetrical ligand N-(8-quinolyl)quinoline-2-carboxamide (Hqcq) and the varied crystal chemistry of its Cu(II), Zn(II), and Cd(II) complexes bearing acetato and aqua co-ligands

Original Paper

Abstract

A new benign and highly efficient procedure, with the ionic liquid tetrabutylammonium bromide as reaction medium, has been used for synthesis of the unsymmetrical ligand N-(8-quinolyl)quinoline-2-carboxamide. Three new complexes [Cu(qcq)(OAc)(H2O)], [Zn(qcq)(OAc)(H2O)], and [Cd(qcq)(OAc)(H2O)] were synthesized and characterized by elemental analysis, IR, UV–visible and 1H NMR spectroscopy, and X-ray crystallography. The mono-anionic qcq is a tridentate unsymmetrical ligand furnishing an N3 set, such that two N atoms of the two quinoline rings and one amido N atom occupy three meridional positions. In [Cd(qcq)(OAc)(H2O)] the acetate anion has a chelating bidentate coordination mode, whereas in [Cu(qcq)(OAc)(H2O)] and [Zn(qcq)(OAc)(H2O)] it acts as a terminal monodentate ligand. The coordination geometry around the M(II) ion is distorted square pyramid in the Cu complex, distorted trigonal bipyramid in the Zn complex, and distorted octahedron in the Cd complex. The discrete molecular units of these complexes are linked by hydrogen bonds and face-to-face ππ stacking interactions. The spectroscopic and electrochemical properties of these complexes are reported and discussed.

Graphical Abstract

Keywords

Benign synthesis Unsymmetrical carboxamide Cu(II), Zn(II), Cd(II) complexes Varied crystal chemistry Cyclic voltammetry 

Supplementary material

706_2014_1232_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 92 kb)
706_2014_1232_MOESM2_ESM.cif (60 kb)
Supplementary material 2 (CIF 60 kb)

References

  1. 1.
    Balsells J, Mejorado L, Phillips M, Ortega F, Aguirre G, Somanathan R, Walsh PJ (1998) Tetrahedron Asymmetry 9:4135CrossRefGoogle Scholar
  2. 2.
    Datta A, Karan NK, Mitra S, Rosair G (2002) Z Naturforsch 57b:999Google Scholar
  3. 3.
    Maurya RC, Rajput S (2006) J Mol Struct 794:24CrossRefGoogle Scholar
  4. 4.
    Adsule S, Barve V, Chen D, Ahmed F, Dou QP, Padhye S, Sarkar FH (2006) J Med Chem 49:7242CrossRefGoogle Scholar
  5. 5.
    Sasmal PK, Majumdar R, Digheb RR, Chakravarty AR (2010) Dalton Trans 39:7104CrossRefGoogle Scholar
  6. 6.
    Creaven BS, Czeglédi E, Devereux M, Enyedy ÉA, Foltyn-Arfa Kia A, Karcz D, Kellett A, McClean S, Nagy NV, Noble A, Rockenbauer A, Szabó-Plánka T, Walsh M (2010) Dalton Trans 39:10854CrossRefGoogle Scholar
  7. 7.
    Lee S-Y, Hille A, Frias C, Kater B, Bonitzki B, Wölfl S, Scheffler H, Prokop A, Gust R (2010) J Med Chem 53:6064CrossRefGoogle Scholar
  8. 8.
    Kim G-J, Shin J-H (1999) Catal Lett 63:83CrossRefGoogle Scholar
  9. 9.
    Chatterjeea D, Mitra A, Roy BC (2000) J Mol Catal A: Chem 161:17CrossRefGoogle Scholar
  10. 10.
    Jayabalakrishnan C, Karvembu R, Natarajan K (2002) Trans Met Chem 27:790CrossRefGoogle Scholar
  11. 11.
    Pouralimardan O, Chamayou A-C, Janiak C, Hosseini-Monfared H (2007) Inorg Chim Acta 360:1599CrossRefGoogle Scholar
  12. 12.
    Xu Z-J, Fang R, Zhao C, Huang J-S, Li G-Y, Zhu N, Che C-M (2009) J Am Chem Soc 131:4405CrossRefGoogle Scholar
  13. 13.
    Kwok C-C, Yu S-C, Sham IHT, Che C-M (2004) Chem Commun 2758Google Scholar
  14. 14.
    Chang K-H, Huang C-C, Liu Y-H, Hu Y-H, Chou P-T, Lin Y-C (2004) Dalton Trans 1731Google Scholar
  15. 15.
    Che C-M, Chan S-C, Xiang H-F, Chan MCW, Liub Y, Wang Y (2004) Chem Commun 1484Google Scholar
  16. 16.
    Gradinaru J, Forni A, Druta V, Tessore F, Zecchin S, Quici S, Garbalau N (2007) Inorg Chem 46:884CrossRefGoogle Scholar
  17. 17.
    Wang L, Qin W, Tang X, Dou W, Liu W, Teng Q, Yao X (2010) Org Biomol Chem 8:3751CrossRefGoogle Scholar
  18. 18.
    Nolan EM, Lippard SJ (2009) Acc Chem Res 42:193CrossRefGoogle Scholar
  19. 19.
    Lane TW, Morel FMM (2000) Proc Natl Acad Sci USA 97:4627CrossRefGoogle Scholar
  20. 20.
    Roth A, Spielberg ET, Plass W (2007) Inorg Chem 46:4362CrossRefGoogle Scholar
  21. 21.
    Patel RN, Gundla VLN, Patel DK (2008) Polyhedron 27:1054CrossRefGoogle Scholar
  22. 22.
    Zhang S, Tu C, Wang X, Yang Z, Zhang J, Lin L, Ding J, Guo Z (2004) Eur J Inorg Chem 4028Google Scholar
  23. 23.
    Shao Y, Zhang J, Tu C, Dai C, Xu Q, Guo Z (2005) J Inorg Biochem 99:1490CrossRefGoogle Scholar
  24. 24.
    Ghosh RD, Das S, Ganguly A, Banerjee K, Chakraborty P, Sarkar A, Chatterjee M, Nanda A, Pradhan K, Choudhuri SK (2011) Dalton Trans 40:10873CrossRefGoogle Scholar
  25. 25.
    Maheswari PU, Brends S, Özalp-Yaman S, De Hoog P, Casellas H, Teat SJ, Massera C, Lutz M, Spek AL, Van Wezel GP, Gamez P, Reedijk J (2007) Chem Eur J 5213Google Scholar
  26. 26.
    Lebon F, Ledecq M, Dieu M, Demazy C, Remacle J, Lapouyade R, Kahn O, Durant F (2001) J Inorg Biochem 86:547CrossRefGoogle Scholar
  27. 27.
    Lebon F, Boggetto N, Ledecq M, Durant F, Benatallah Z, Sicsic S, Lapouyade R, Kahn O, Mouithys-Mickalad A, Deby-Dupont G, Reboud-Ravaux M (2002) Biochem Pharmacol 63:1863CrossRefGoogle Scholar
  28. 28.
    Ledecq M, Lebon F, Durant F, Giessner-Prettre C, Marquez A, Gresh N (2003) J Phys Chem B 107:10640CrossRefGoogle Scholar
  29. 29.
    Pulina NA, Mokin PA, Yushkov VV, Zalesov VV, Odegova TF, Tomilov MA, Yatsenko KV (2008) Pharm Chem J 42:14CrossRefGoogle Scholar
  30. 30.
    Sau DK, Butcher RJ, Chaudhuri S, Saha N (2003) Mol Cell Biochem 253:21CrossRefGoogle Scholar
  31. 31.
    Holm RH, Kennepohl P, Solomon EI (1996) Chem Rev 96:2239CrossRefGoogle Scholar
  32. 32.
    Liang X, Weishäupl M, Parkinson JA, Parsons S, McGregor PA, Sadler PJ (2003) Chem Eur J 4709Google Scholar
  33. 33.
    Montalbetti CAGN, Falque V (2005) Tetrahedron 61:10827CrossRefGoogle Scholar
  34. 34.
    Belda O, Moberg C (2005) Coord Chem Rev 249:727CrossRefGoogle Scholar
  35. 35.
    Patra AK, Rose MJ, Murphy KA, Olmstead MM, Mascharak PK (2004) Inorg Chem 43:4487CrossRefGoogle Scholar
  36. 36.
    Meghdadi S, Amirnasr M, Habibi MH, Amiri A, Ghodsi V, Rohani A, Harrington RW, Clegg W (2008) Polyhedron 27:2771CrossRefGoogle Scholar
  37. 37.
    Borowiak-Resterna A, Cierpiszewski R, Prochaska K (2010) J Hazard Mater 179:828CrossRefGoogle Scholar
  38. 38.
    Dangel B, Clarke M, Haley J, Sames D, Polt R (1997) J Am Chem Soc 119:10865CrossRefGoogle Scholar
  39. 39.
    Maumela H, Hancock RD, Carlton L, Reibenspies JH, Wainwright KP (1995) J Am Chem Soc 117:6698CrossRefGoogle Scholar
  40. 40.
    Zhai Q-G, Lu C-Z, Wu X-Y, Batten SR (2007) Cryst Growth Des 7:2332CrossRefGoogle Scholar
  41. 41.
    Meghdadi S, Mereiter K, Amiri A, Mohammadi NS, Zamani F, Amirnasr M (2010) Polyhedron 29:2225CrossRefGoogle Scholar
  42. 42.
    Amirnasr M, Schenk KJ, Meghdadi S (2002) Inorg Chim Acta 338:19CrossRefGoogle Scholar
  43. 43.
    Amiri A, Amirnasr M, Meghdadi S, Mereiter K, Ghodsi V, Gholami A (2009) Inorg Chim Acta 362:3934CrossRefGoogle Scholar
  44. 44.
    Kim JI, Kwak HY, Yoon JH, Ryu DW, Yoo IY, Yang N, Cho BK, Park JG, Lee H, Hong CS (2009) Inorg Chem 48:2956CrossRefGoogle Scholar
  45. 45.
    Meghdadi S, Mirkhani V, Ford PC (2012) Synth Commun 42:246CrossRefGoogle Scholar
  46. 46.
    Meghdadi S, Mirkhani V, Ford PC (2012) Chem Inform 43:49Google Scholar
  47. 47.
    Raman N, Pitchaikani Raja Y, Kulandaisamy A (2001) Proc Indian Acad Sci (Chem Sci) 113:183CrossRefGoogle Scholar
  48. 48.
    Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227CrossRefGoogle Scholar
  49. 49.
    Nakamoto K (2009) Infrared and Raman spectra of inorganic and coordination compounds, part B, 6th edn. Wiley, New York, p 64Google Scholar
  50. 50.
    Alezra V, Bernardinelli G, Corminboeuf C, Frey U, Kündig EP, Merbach AE, Saudan ChM, Viton F, Weber J (2004) J Am Chem Soc 126:4843CrossRefGoogle Scholar
  51. 51.
    Simmons CJ, Alcock NW, Seff K, Fitzgerald W, Hathaway BJ (1985) Acta Crystallogr B 41:42CrossRefGoogle Scholar
  52. 52.
    Murphy B, Hathaway B (2003) Coord Chem Rev 243:237CrossRefGoogle Scholar
  53. 53.
    Kokunov YuV, Gorbunova YuE, Kovalev VV, Ivanov SV (2008) Russ J Coord Chem 34:795CrossRefGoogle Scholar
  54. 54.
    Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, p 231Google Scholar
  55. 55.
    Gosser DK (1993) Cyclic voltammetry: simulation and analysis of reaction mechanisms. VCH Publishers, New York, p 43Google Scholar
  56. 56.
    Connelly NG, Geiger WE (1996) Chem Rev 96:877CrossRefGoogle Scholar
  57. 57.
    Bruker programs (2009) APEX2 version 2009.9-0, SAINT version 7.68A, SADABS version 2008/1, SHELXTL version 2008/4. Bruker AXS Inc, MadisonGoogle Scholar
  58. 58.
    Sheldrick GM (2008) Acta Crystallogr Sect E 64:112CrossRefGoogle Scholar
  59. 59.
    Macrae CF, Edgington PR, McCabe P, Pidcock E, Shields GP, Taylor R, Towler M, van de Streek J (2006) J Appl Cryst 39:453CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.Department of ChemistryIsfahan University of TechnologyIsfahanIran
  2. 2.Faculty of ChemistryVienna University of TechnologyViennaAustria
  3. 3.Department of Chemistry, Faculty of ScienceTarbiat Modares UniversityTehranIran

Personalised recommendations