Skip to main content
Log in

Ba@Sn10 and Ru@Sn7/Rh@Sn7 polyhedra as basic building units in the stannides BaT 5–x Sn9 (T = Ru, Rh)

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The tin-rich stannides BaRh5–x Sn9 and BaRu5–x Sn9 were synthesized by direct reactions of the elements in sealed niobium or tantalum tubes in muffle furnaces. Their structures were refined from X-ray single-crystal diffractometer data: BaCo4.7Ge9 type, Pnma, Z = 4, a = 1,553.44(8) pm, b = 438.38(2) pm, c = 1,861.5(1) pm, wR = 0.0558, 2,787 F 2 values for BaRh4.43Sn9, a = 1,554.09(6) pm, b = 438.44(1) pm, c = 1,873.44(5) pm, wR = 0.0589, 2,184 F 2 values for BaRh4.68Sn9, and a = 1,560.7(2) pm, b = 440.24(4) pm, c = 1,869.0(3) pm, wR = 0.0674, 2,197 F 2 values for BaRu4.57Sn9 with 93 variables per refinement. The Rh5 and Ru5 sites show small defects. The shortest interatomic distances occur for Ru–Sn and Rh–Sn, leading to Ru@Sn7 and Rh@Sn7 building units that derive from an octahedron by replacing one apex by a pair of tin atoms. These units condense by common triangular and rectangular faces forming a three-dimensional network in which the barium atoms fill slightly distorted pentagonal prismatic voids.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Skolozdra RV (1997) Stannides of rare earth and transition metals. In: Gschneidner KA Jr, Eyring L (eds), Handbook on the physics and chemistry of rare earths, vol 24. Elsevier Science, Amsterdam, Chapter 164, p 399

  2. Villars P, Cenzual K (2013) Pearson’s crystal data–crystal structure database for inorganic compounds, Release 2013/14. ASM International, Materials Park

    Google Scholar 

  3. Niepmann D, Pöttgen R, Poduska KM, DiSalvo F, Trill H, Mosel BD (2001) Z Naturforsch 56b:1

    Google Scholar 

  4. Niepmann D, Pöttgen R, Künnen B, Kotzyba B, Rosenhahn C, Mosel BD (1999) Chem Mater 11:1597

    Article  CAS  Google Scholar 

  5. Routsi CD, Yakinthos JK, Gamari-Seale H (1992) J Magn Magn Mater 117:79

    Article  CAS  Google Scholar 

  6. Chevalier B, Sebastian CP, Pöttgen R (2006) Solid State Sci 8:1000

    Article  CAS  Google Scholar 

  7. Gamża M, Schnelle W, Gumeniuk R, Prots Y, Ślebarski A, Rosner H, Grin Y (2009) J Phys Condens Matter 21:325601

    Article  Google Scholar 

  8. Anand VK, Adroja DT, Hillier AD, Kockelmann W, Fraile A, Strydom AM (2011) J Phys Condens Matter 23:276001

    Article  CAS  Google Scholar 

  9. Wu Z, Hoffmann R-D, Pöttgen R (2002) Z Anorg Allg Chem 628:1484

    Article  CAS  Google Scholar 

  10. Wu Z, Eckert H, Senker J, Johrendt D, Kotzyba G, Mosel BD, Trill H, Hoffmann R-D, Pöttgen R (2003) J Phys Chem B 107:1943

    Article  CAS  Google Scholar 

  11. Dinges T, Pöttgen R (2010) Z Kristallogr 225:405

    CAS  Google Scholar 

  12. Sreeraj P, Johrendt D, Müller H, Hoffmann R-D, Wu Z, Pöttgen R (2005) Z Naturforsch 60b:933

    Google Scholar 

  13. Sreeraj P, Kurowski D, Hoffmann R-D, Wu Z, Pöttgen R (2005) J Solid State Chem 178:3420

    Article  CAS  Google Scholar 

  14. Pöttgen R, Wu Z, Hoffmann R-D, Kotzyba G, Trill H, Senker J, Johrendt D, Mosel BD, Eckert H (2002) Heteroatom Chem 13:506

    Article  Google Scholar 

  15. Pöttgen R, Dinges T, Eckert H, Sreeraj P, Wiemhöfer H-D (2010) Z Phys Chem 224:1475

    Article  Google Scholar 

  16. Schlüter M, Kunst A, Pöttgen R (2002) Z Anorg Allg Chem 628:2641

    Article  Google Scholar 

  17. Cooper AS (1980) Mater Res Bull 15:799

    Article  CAS  Google Scholar 

  18. Hodeau JL, Marezio M, Remeika JP, Chen CH (1982) Solid State Commun 42:97

    Article  CAS  Google Scholar 

  19. Miraglia S, Hodeau JL, Marezio M, Laviron C, Ghedira M, Espinosa GP (1986) J Solid State Chem 63:358

    Article  CAS  Google Scholar 

  20. Hoffmann R-D, Kußmann D, Rodewald UC, Pöttgen R, Rosenhahn C, Mosel BD (1999) Z Naturforsch 54b:709

    Google Scholar 

  21. Schwickert C, Pöttgen R (2013) Z Naturforsch 68b:17

    Article  Google Scholar 

  22. Nasir N, Melnychenko-Koblyuk N, Grytsiv A, Rogl P, Bauer E, Royanian E, Michor H, Hilscher G, Giester G (2009) Intermetallics 17:471

    Article  CAS  Google Scholar 

  23. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786

    Article  CAS  Google Scholar 

  24. Petricek V, Dusek M, Palatinus L (2006) Structure determination software programs. Institute of Physics, University of Prague, Prague (Czech Republic)

    Google Scholar 

  25. Hlukhyy V, Fässler TF, Claus P (2009) Z Anorg Allg Chem 635:708

    Article  CAS  Google Scholar 

  26. Schwickert C, Pöttgen R (2014) Z Naturforsch. doi:10.5560/ZNB.2014-4008

    Google Scholar 

  27. Emsley J (1999) The elements. Oxford University Press, Oxford

    Google Scholar 

  28. Riecken JF, Hermes W, Chevalier B, Hoffmann R-D, Schappacher FM, Pöttgen R (2007) Z Anorg Allg Chem 633:1094

    Article  CAS  Google Scholar 

  29. Pöttgen R, Hoffmann R-D, Sampathkumaran EV, Das I, Mosel BD, Müllmann R (1997) J Solid State Chem 134:326

    Article  Google Scholar 

  30. Donohue J (1974) The structures of the elements. Wiley, New York

    Google Scholar 

  31. Pöttgen R (2006) Z Naturforsch 61b:677

    Google Scholar 

  32. Schwomma O, Nowotny H, Wittmann A (1964) Monatsh Chem 95:1538

    Article  CAS  Google Scholar 

  33. Eisenmann B, Schäfer H (1986) J Less-Common Met 123:89

    Article  CAS  Google Scholar 

  34. Reichelt W, Söhnel T, Rademacher O, Oppermann H, Simon A, Köhler J, Mattausch HJ (1995) Angew Chem 107:2307

    Article  Google Scholar 

  35. Pöttgen R, Gulden T, Simon A (1999) GIT Labor-Fachz 43:133

    Google Scholar 

  36. Yvon K, Jeitschko W, Parthé E (1977) J Appl Crystallogr 10:73

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Pöttgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwickert, C., Rodewald, U.C. & Pöttgen, R. Ba@Sn10 and Ru@Sn7/Rh@Sn7 polyhedra as basic building units in the stannides BaT 5–x Sn9 (T = Ru, Rh). Monatsh Chem 145, 1227–1233 (2014). https://doi.org/10.1007/s00706-014-1209-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1209-6

Keywords

Navigation