Skip to main content
Log in

SrAu4Ga3: a further example with Ga3 units and a Lonsdaleite-related gold substructure

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The gallide SrAu4Ga3 was obtained by induction melting of the elements in a sealed tantalum tube and subsequent annealing in a muffle furnace. SrAu4Ga3 is isotypic with Ba3Ag14.6Al6.4. Its structure was refined from single crystal X-ray diffractometer data: \({P}{\bar{6}}\)2m, a = 860.9(3) pm, c = 720.4(2) pm, wR = 0.0342, 678 F values, and 30 variables. The gold atoms build a distorted lonsdaleite-related (hexagonal diamond) substructure and the cavities left by this network are filled in an ordered manner by the strontium atoms as well as Ga3 and (Ga,Au)3 triangles. The latter have Ga–Ga and Ga/Au–Ga/Au distances of 305 and 262 pm, respectively. Consequently one can topologically describe the SrAu4Ga3 structure as an ordered substitution variant of the Zintl phase CaIn2. This structural relationship is discussed on the basis of a group–subgroup scheme.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Raub CJ, Hamilton DC (1964) J Less-Common Met 6:486

    Article  CAS  Google Scholar 

  2. Zachwieja U (1996) J Alloys Compd 235:12

    Article  CAS  Google Scholar 

  3. Henry PF, Weller MT (1999) J Alloys Compd 292:152

    Article  CAS  Google Scholar 

  4. Merlo F (1982) J Less-Common Met 86:241

    Article  CAS  Google Scholar 

  5. Fornasini ML, Merlo F (1985) J Solid State Chem 59:65

    Article  CAS  Google Scholar 

  6. Merlo F, Fornasini ML (1984) Rev Chim Min 21:273

    CAS  Google Scholar 

  7. Feller-Kniepmeier M, Heumann T (1960) Z Metallkd 51:404

    CAS  Google Scholar 

  8. Fornasini ML (1985) J Solid State Chem 59:60

    Article  CAS  Google Scholar 

  9. Fornasini ML, Merlo F, Pani M (1985) Rev Chim Min 22:791

    CAS  Google Scholar 

  10. Palenzona A, Bonino GB (1967) Atti Accad Naz Lincei (Cl Sci Fis) Mat Nat 42:504

    CAS  Google Scholar 

  11. Bruzzone G, Bonino GB (1970) Atti Accad Naz Lincei (Cl Sci Fis) Mat Nat 48:235

    CAS  Google Scholar 

  12. Tappe F, Matar SF, Schwickert C, Winter F, Gerke B, Pöttgen R (2013) Monatsh Chem 144:751

    Article  CAS  Google Scholar 

  13. Tappe F, Schwickert C, Eul M, Pöttgen R (2011) Z Naturforsch 66B:1219

    Article  Google Scholar 

  14. Lin Q, Corbett JD (2007) Inorg Chem 46:8722

    Article  CAS  Google Scholar 

  15. Muts IR, Zaremba VI, Rodewald UC, Pöttgen R (2008) Z Anorg Allg Chem 634:56

    Article  CAS  Google Scholar 

  16. Fornasini ML, Merlo F, Pani M (2001) Z Kristallogr NCS 216:23

    CAS  Google Scholar 

  17. Muts IR, Schappacher FM, Hermes W, Zaremba VI, Pöttgen R (2007) J Solid State Chem 180:2202

    Article  CAS  Google Scholar 

  18. Gerke B, Hoffmann R-D, Pöttgen R (2013) Z Anorg Allg Chem 639:2444

    Article  CAS  Google Scholar 

  19. Dai J-C, Corbett JD (2007) Inorg Chem 46:4592

    Article  CAS  Google Scholar 

  20. Ownby PD, Yang X, Liu J (1992) J Am Ceram Soc 75:1876

    Article  CAS  Google Scholar 

  21. Kußmann D, Hoffmann R-D, Pöttgen R (2001) Z Anorg Allg Chem 627:2053

    Article  Google Scholar 

  22. Mishra T, Lin Q, Corbett JD (2013) Inorg Chem 52:13623

    Article  CAS  Google Scholar 

  23. Lin Q, Mishra T, Corbett JD (2013) J Am Chem Soc 135:11023

    Article  CAS  Google Scholar 

  24. Gerke B, Pöttgen R (2014) Z Naturforsch 69b:121

    Article  Google Scholar 

  25. Cordier G, Röhr C (1991) J Less-Common Met 170:333

    Article  CAS  Google Scholar 

  26. Palatinus L, Chapuis G (2007) J Appl Crystallogr 40:786

    Article  CAS  Google Scholar 

  27. Petricek V, Dusek M, Palatinus L (2006) JANA2006, The Crystallographic Computing System. Institute of Physics, University of Prague, Prague, Czech Republic

    Google Scholar 

  28. Villars P, Cenzual K (2013) Pearson’s crystal data—Crystal structure database for inorganic compounds, Release 2013/14. ASM International, Materials Park

    Google Scholar 

  29. Donohue J (1974) The structures of the elements. Wiley, New York

    Google Scholar 

  30. Fornasini ML (1983) Acta Crystallogr C 39:943

    Article  Google Scholar 

  31. Sichevych O, Prots Yu, Grin Yu (2006) Z Kristallogr NCS 221:265

    CAS  Google Scholar 

  32. Haarmann F, Prots Yu, Göbel S, von Schnering HG (2006) Z Kristallogr NCS 221:257

    CAS  Google Scholar 

  33. Wiberg N, Blank T, Amelunxen K, Nöth H, Knizek J, Habereder T, Kaim W, Wanner M (2001) Eur J Inorg Chem 1719

    Article  Google Scholar 

  34. Emsley J (1999) The Elements. Oxford University Press, Oxford

    Google Scholar 

  35. Cordier G, Röhr C (1991) Z Kristallogr 197:312

    Article  CAS  Google Scholar 

  36. Tran VH, Bourée F, André G, Troc R (1996) Solid State Commun 98:111

    Article  CAS  Google Scholar 

  37. Bärnighausen H (1980) Commun Math Chem 9:139

    Google Scholar 

  38. Müller U (2004) Z Anorg Allg Chem 630:1519

    Article  Google Scholar 

  39. Müller U (2010) Relating crystal structures by group-subgroup relations. In: Wondratschek H, Müller U (eds) International Tables for Crystallography, Vol A1, Symmetry relations between space groups, 2nd edn. John Wiley & sons Ltd, Chichester, p 44

    Google Scholar 

  40. Müller U (2012) Symmetriebeziehungen zwischen verwandten Kristallstrukturen. Vieweg + Teubner, Wiesbaden

    Book  Google Scholar 

  41. Pöttgen R, Gulden Th, Simon A (1999) GIT Labor Fachzeitschrift 43:133

    Google Scholar 

  42. Pöttgen R, Lang A, Hoffmann R-D, Künnen B, Kotzyba G, Müllmann R, Mosel B-D, Rosenhahn C (1999) Z Kristallogr 214:143

    Article  Google Scholar 

  43. Yvon K, Jeitschko W, Parthé E (1977) J Appl Crystallogr 10:73

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dipl.-Ing. U. Ch. Rodewald for the intensity data collection and N. Roustide for experimental help. This work was financially supported by the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Pöttgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seidel, S., Hoffmann, RD. & Pöttgen, R. SrAu4Ga3: a further example with Ga3 units and a Lonsdaleite-related gold substructure. Monatsh Chem 145, 1043–1049 (2014). https://doi.org/10.1007/s00706-014-1205-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1205-x

Keywords

Navigation