Skip to main content
Log in

Theoretical study on the reaction mechanism of cyclopropenylidene with azacyclopropane: ring expansion process

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The reaction mechanism between cyclopropenylidene and azacyclopropane has been systematically investigated by employing the second-order Møller–Plesset perturbation theory (MP2) method to better understand the reactivity of cyclopropenylidene with the three-membered ring compound azacyclopropane. Geometry optimization and vibrational analysis have been performed for the stationary points on the potential energy surfaces of the system. It was found that, in the first step of this reaction, cyclopropenylidene can insert into azacyclopropane at its C–N bond to form a spiro intermediate. In the second, ring-opening step, a carbene intermediate is formed. Through the following two H-transfer steps, the carbene intermediate forms an allene [pathway (1)] or alkyne [pathway (2)] product. From the kinetic viewpoint, the pathway with alkyne formation is easier than that with allene formation. From the thermodynamic viewpoint, the allene is the dominant product because the reaction is exothermic (287.8 kJ mol−1).

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Herges R, Mebel A (1994) J Am Chem Soc 116:8229

    Article  CAS  Google Scholar 

  2. Maier G, Reisenauer HP, Schwab W, Carsky P, Hess BA, Schaad LJ (1987) J Am Chem Soc 109:5183

    Article  CAS  Google Scholar 

  3. Seburg RA, DePinto JT, Patterson EV, McMahon RJ (1995) J Am Chem Soc 117:835

    Article  CAS  Google Scholar 

  4. MacAllister T, Nicholson A (1981) J Chem Soc Faraday Trans 77:821

    Article  Google Scholar 

  5. Qi CH, Oberg KI, Wilner DJ, Rosenfeld KA (2013) Astrophys J Lett 765:1

    Article  Google Scholar 

  6. Winnewisser G, Mezger PG, Breuer HD (1974) Top Curr Chem 44:1

    CAS  Google Scholar 

  7. Mattews HE, Irvine WM (1985) Astrophys J Lett 298:L61

    Article  Google Scholar 

  8. Herbst E, Leung LM (1989) Astrophys J Suppl Ser 69:271

    Article  CAS  Google Scholar 

  9. Vrtilek JM, Gottlieb CA, Thaddeus P (1987) Astrophys J 314:716

    Article  CAS  Google Scholar 

  10. Madden SC, Irvine WM, Mathews HE, Friberg P, Swade DA (1989) Astron J 97:1403

    Article  CAS  Google Scholar 

  11. Oike T, Kawaguchi K, Takano S, Nakai NP (2004) Astron Soc Jpn 56:431

    CAS  Google Scholar 

  12. Morisawa Y, Fushitani M, Kato Y, Hoshina H, Simizu Z, Watanabe S, Miyamoto Y, Kasai Y, Kawaguchi K, Momose T (2006) Astrophys J 642:954

    Article  CAS  Google Scholar 

  13. Seburg RA, Patterson EV, Stanton JF, McMahon RJ (1997) J Am Chem Soc 119:5847

    Article  CAS  Google Scholar 

  14. Green S, DeFrees DJ, McLean AD (1987) Astrophys J Suppl Ser 65:175

    Article  CAS  Google Scholar 

  15. Taatjes CA, Klippenstein SJ, Hansen N, Miller JA, Cool TA, Wang J, Law ME, Westmoreland PR (2005) Phys Chem Chem Phys 7:806

    Article  CAS  Google Scholar 

  16. Lau KC, Ng CY (2006) Chin J Chem Phys 19:29

    Article  CAS  Google Scholar 

  17. Varadwaj PR, Fujimori R, Kawaguchi K (2011) J Phys Chem A 115:8458

    Article  CAS  Google Scholar 

  18. Hemberger P, Köhler J, Fischer I, Piani G, Poisson L, Mestdagh JM (2012) Phys Chem Chem Phys 14:6173

    Article  Google Scholar 

  19. Hemberger P, Noller B, Steinbauer M, Fischer I, Alcaraz C (2010) J Phys Chem A 114:11269

    Article  CAS  Google Scholar 

  20. Jones M, Moss RA (1973) Carbenes. Wiley, New York

    Google Scholar 

  21. Miki S, Ohno T, Iwasaki H, Maeda Y, Yoshida Z-I (1988) Tetrahedron 44:55

    Article  CAS  Google Scholar 

  22. Morton MS, Selegue JP (1995) J Am Chem Soc 117:7005

    Article  CAS  Google Scholar 

  23. Kuchenbeiser G, Donnadieu B, Bertrand G (2008) J Organomet Chem 693:899

    Article  CAS  Google Scholar 

  24. Lavallo V, Canac Y, Donnadieu B, Schoeller WS, Bertrand G (2006) Science 312:722

    Article  CAS  Google Scholar 

  25. Chotima R, Dale T, Green M, Hey TW, McMullin CL, Nunns A, Orpen G, Shishkov IV, Wass DF, Wingad RL (2011) Dalton Trans 40:5316

    Article  CAS  Google Scholar 

  26. Green M, McMullin CL, Morton GJP, Orpen AG, Wass DF, Wingad RL (2009) Organometallics 28:1476

    Article  CAS  Google Scholar 

  27. Mohajeri A, Jenabi MJ (2007) J Mol Struct (Theochem) 820:65

    Article  CAS  Google Scholar 

  28. Ochsenfeld C, Kaiser RI, Lee YT, Suits AG, Head-Gordon M (1987) J Chem Phys 106:4141

    Article  Google Scholar 

  29. Hehre WJ, Pople JA, Lathan WA, Radom L, Wasserman E, Wasserman ZR (1976) J Am Chem Soc 98:4378

    Article  CAS  Google Scholar 

  30. Lee TJ, Bunge A, Schaefer HF (1985) J Am Chem Soc 107:137

    Article  CAS  Google Scholar 

  31. DeFrees DJ, McLean AD (1986) Astrophys J 308:L31

    Article  CAS  Google Scholar 

  32. Talbi D, Pauzat F (1995) Chem Phys Lett 244:269

    Article  CAS  Google Scholar 

  33. Gauss J, Stanton JF (1999) J Mol Struct 276:70

    Google Scholar 

  34. Margules L, Demaison J, Boggs JE (2000) Struct Chem 11:145

    Article  CAS  Google Scholar 

  35. Vázquez J, Harding ME, Gauss J, Stanton JF (2009) J Phys Chem A 113:12447

    Article  Google Scholar 

  36. Varadwaj PR, Varadwaj A, Peslherbe GH (2012) J Comput Chem 33:2073

    Article  CAS  Google Scholar 

  37. Fleming I (1976) Frontier orbitals and organic chemical reactions. Wiley, London

    Google Scholar 

  38. Li QL, Sun Q, Gu JS, Tan XJ (2013) Russ J Phys Chem 87:806

    Article  CAS  Google Scholar 

  39. Tan XJ, Li Z, Sun Q, Li P (2012) Bull Kor Chem Soc 33:1934

    Article  CAS  Google Scholar 

  40. Head-Gordon M, Pople JA, Frisch MJ (1988) Chem Phys Lett 153:503

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota M, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Rev E.01. Gaussian Inc., Wallingford, CT, USA

Download references

Acknowledgments

This work is supported by NSFC (21003082, 21303093), the project of Shandong Province Higher Educational Science and Technology Program (J13LM06, J13LM53), and the State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (KF2013-05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Tan or Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, X., Wang, W., Jing, Y. et al. Theoretical study on the reaction mechanism of cyclopropenylidene with azacyclopropane: ring expansion process. Monatsh Chem 145, 1109–1115 (2014). https://doi.org/10.1007/s00706-014-1174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-014-1174-0

Keywords

Navigation