Skip to main content

Advertisement

Log in

Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4

  • Review
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The current array of commercially produced cathode materials for advanced lithium-ion batteries is poorly suited to today’s energy supply demands. A current example of this problem is the unsatisfactory range of commercially available electric vehicles or even of mobile electronic devices. The bottleneck of capacity is the availability of cathode materials like LiCoO2 that also has associated safety risks. Lithium conducting phosphates with the olivine structure LiMPO4 (M = Fe, Mn, Co, Ni) with a theoretical capacity of approximately 170 mAh g−1 might provide recourse. LiNiPO4 has received increasing interest in recent years, mainly because of its similar structure to LiFePO4, which was shown to have beneficial electrochemical properties after a few years of intensive research. An optimized nickel phosphate would in theory possess an even higher energy density, because of its redox potential of about 5.1 V vs. Li/Li+. Nevertheless advances in ionic and electronic conductivity as well as electrochemical reversibility of LiNiPO4 are rare and the reasons are not fully understood. This review presents an overview of recent progress in the fabrication of LiNiPO4 powders and the general synthesis approaches to circumvent the drawbacks of LiNiPO4. The impacts of these fabrication methods on the purity, structure, and electrochemical performance of LiNiPO4 powders are discussed. Particular attention is paid to electrochemical activation of nickel in the olivine structure and recent trials to apply LiNiPO4 in aqueous and nonaqueous lithium-ion batteries are reviewed. On the basis of this rigorous study a complete picture of the state of the art of LiNiPO4 as a possible cathode material and its perspectives is given.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kraytsberg A, Ein-Eli Y (2012) Adv Energy Mater 2:922

    CAS  Google Scholar 

  2. Devaraju MK, Honma I (2012) Adv Energy Mater 2:284

    CAS  Google Scholar 

  3. ICCNExergy (2011) What is your battery size? www.nexergy.com/media/BatteryGraph.JPG. Accessed 6 July 2012

  4. Goodenough JB (1994) Ionics 69:184

    CAS  Google Scholar 

  5. Goodenough JB, Kim Y (2010) Chem Mater 22:587

    CAS  Google Scholar 

  6. Nagura T, Tazawa K (1990) Prog Batteries Sol Cells 9:20

    Google Scholar 

  7. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) J Electrochem Soc 144:1188

    CAS  Google Scholar 

  8. Tarascon JM, Armand M (2001) Nature 414:359

    CAS  Google Scholar 

  9. Fergus JW (2010) J Power Sources 195:939

    CAS  Google Scholar 

  10. Ellis BL, Mahnouk WRM, Makimura Y, Toghill K, Nazar LF (2007) Nat Mater 6:749

    CAS  Google Scholar 

  11. Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F (2008) Nat Mater 7:665

    CAS  Google Scholar 

  12. Ramana CV, Mauger A, Gendron F, Julien CM, Zaghib K (2009) J Power Sources 187:555

    CAS  Google Scholar 

  13. Li YZ, Zhou Z, Ren MM, Gao XP, Yan J (2006) Electrochim Acta 51:6498

    CAS  Google Scholar 

  14. Padhi AK, Nanjundaswamy KS, Masquelier C, Okada S, Goodenough JB (1997) J Electrochem Soc 144:1609

    CAS  Google Scholar 

  15. Yamada A, Chung SC, Hinokuma K (2001) J Electrochem Soc 148:A224

    CAS  Google Scholar 

  16. Zhong S, Xu Y, Li Y, Zeng H, Li W, Wang J (2012) Rare Met 31:474

    CAS  Google Scholar 

  17. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) J Power Sources 97:430

    Google Scholar 

  18. Wolfenstine J, Allen J (2005) J Power Sources 142:389

    CAS  Google Scholar 

  19. Zhu XH, Chen N, Lian F, Song Y, Li Y (2011) Chin Sci Bull 56:3229

    CAS  Google Scholar 

  20. Zhou F, Cococcioni M, Kang K, Ceder G (2004) Electrochem Commun 6:1144

    CAS  Google Scholar 

  21. Howard WF, Spotnitz RM (2007) J Power Sources 165:887

    CAS  Google Scholar 

  22. Hautier G, Jain A, Ong SP, Kang B, Moore C, Doe R, Ceder G (2011) Chem Mater 23:3495

    CAS  Google Scholar 

  23. Santoro RP, Segal DJ, Newnham RE (1966) J Phys Chem Solids 27:1192

    CAS  Google Scholar 

  24. Newnham RE (1975) Structure–property relations. Springer, Berlin

    Google Scholar 

  25. Goni A, Lezama L, Barberis GE, Pizarro JL, Arriortua MI, Rojo T (1996) J Magn Mater 164:251

    CAS  Google Scholar 

  26. Piana M, Arrabito M, Bodoardo S, D’Epifanio A, Satolli D, Croce F, Scrosati B (2002) Ionics 8:17

    CAS  Google Scholar 

  27. Ruffo R, Huggins RA, Mari CM, Piana M, Weppner W (2005) Ionics 11:213

    CAS  Google Scholar 

  28. Julien CM, Mauger A, Zaghib K, Veillette R, Groult H (2012) Ionics 18:625

    CAS  Google Scholar 

  29. Minakshi M, Singh P, Appadoo D, Martin DE (2011) Electrochim Acta 56:4356

    CAS  Google Scholar 

  30. Abrahams I (1985) Acta Cryst C41:1

    Google Scholar 

  31. Rissouli K, Benkhouja K, Ramos-Barrado JR, Julien C (2003) Mater Sci Eng B 98:185

    Google Scholar 

  32. Ramana CV, Ait-Salah A, Utsunomiya S, Becker U, Mauger A, Gendron F, Julien CM (2006) Chem Mater 18:3788

    CAS  Google Scholar 

  33. Newnham RE, Redman MJ (1965) J Am Chem Soc 48:547

    CAS  Google Scholar 

  34. Geller S, Durand JL (1960) Acta Cryst 13:325

    CAS  Google Scholar 

  35. Fisher CAJ, Prieto VMH, Islam MS (2008) Chem Mater 20:5907

    CAS  Google Scholar 

  36. Islam MS, Driscoll DJ, Fisher CAJ, Slater PR (2005) Chem Mater 17:5085

    CAS  Google Scholar 

  37. Murugan AV, Muraliganth T, Ferreira PJ, Manthiram A (2009) Inorg Chem 48:946

    CAS  Google Scholar 

  38. Jinsub L, Donghan K, Vinod M, Jaekook K (2010) Phys Scr T139:014060

    Google Scholar 

  39. Shang SL, Wang Y, Mei ZG, Hui XD, Liu ZK (2012) J Mater Chem 22:1142

    CAS  Google Scholar 

  40. Tucker MC, Doeff MM, Richardson TJ, Fiñones R, Reimer JA, Cairns EJ (2002) Electrochem Solid-State Lett 5:A95

    CAS  Google Scholar 

  41. Nanjundaswamy KS, Padhi AK, Goodenough JB, Okada S, Ohtsuka H, Arai H, Yamaki J (1996) Solid State Ionics 1–2:1

    Google Scholar 

  42. Ong SP, Jain A, Hautier G, Kang B, Ceder G (2010) Electrochem Commun 12:427

    CAS  Google Scholar 

  43. Megaw HD (1974) Acta Cryst B30:1887

    Google Scholar 

  44. Toprakci O, Toprakci HAK, Ji L, Zhang X (2010) KONA 28:50

    CAS  Google Scholar 

  45. Le Bacq O, Pasturel A (2005) Philos Mag 85:1747

    Google Scholar 

  46. Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F, Garcia-Jaca J, Gallardo JM, Sanján ML, Amador U (2001) Chem Mater 13:1570

    CAS  Google Scholar 

  47. Chung SY, Bloking JT, Chiang YM (2002) Nat Mater 1:123

    CAS  Google Scholar 

  48. Molenda J, Stoklosa A, Bak T (1989) Solid State Ionics 36:53

    CAS  Google Scholar 

  49. Shimakawas Y, Numata T, Tabuchi J (1997) J Solid State Chem 131:138

    Google Scholar 

  50. Karthickprabhu S, Hirankumar G, Maheswaran A, Sanjeeviraja C, Daries Bella RS (2013) J Alloy Compd 548:65

    CAS  Google Scholar 

  51. Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Hirankumar G, Sanjeeviraja C (2011) Ionics 17:201

    CAS  Google Scholar 

  52. Herle SP, Ellis B, Coombs N, Nazar LF (2004) Nat Mater 3:147

    CAS  Google Scholar 

  53. Wang D, Xiao J, Xu W, Zhang JG (2010) Investigation of LiNiPO4 as a cathode material for lithium ion battery. The 15th international meeting on lithium batteries, abstract #372

  54. Dimesso L, Becker D, Spanheimer C, Jaegermann W (2012) J Solid State Electrochem 16:3791

    CAS  Google Scholar 

  55. Ellis B, Herle SP, Rho YH, Nazar LF, Dunlap R, Perry LK, Ryan DH (2007) Faraday Discuss 134:119

    CAS  Google Scholar 

  56. Minakshi M, Singh P, Ralph D, Appadoo D, Blackford M, Ionescu M (2012) Ionics 18:583

    CAS  Google Scholar 

  57. Biendicho JJ, West AR (2011) Solid State Ionics 203:33

    CAS  Google Scholar 

  58. Fang H, Pan Z, Li L, Yang Y, Yan G, Li G, Wei S (2008) Electrochem Commun 10:1071

    CAS  Google Scholar 

  59. Morgan D, Van der Ven A, Ceder G (2004) Electrochem Solid-State Lett 7:A30

    CAS  Google Scholar 

  60. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS (2008) Solid State Ionics 178:1676

    CAS  Google Scholar 

  61. Minakshi M, Ralph D, Blackford M, Ionescu M (2011) ECS Trans 35:281

    CAS  Google Scholar 

  62. Kandhasamy S, Pandey A, Minakshi M (2012) Electrochim Acta 60:170

    CAS  Google Scholar 

  63. Luo JY, Cui WJ, He P, Xia YY (2010) Nat Chem 2:760

    Google Scholar 

  64. Park SI, Okada S, Yamaki JI (2011) J Novel Carbon Res Sci 3:27

    Google Scholar 

  65. Wessells C, Ruff R (2010) Electrochem Solid-State Lett 13:A59

    CAS  Google Scholar 

  66. Ruffo R, Wessells C, Huggins RA, Cui Y (2011) Electrochem Commun 11:247

    Google Scholar 

  67. Aurbach D, Gofer Y, Dekker M (1999) The electrochemical window of nonaqueous electrolyte solutions. In: Aurbach D (ed) Nonaqueous electrochemistry. CRC, Boca Raton (Chap 4)

    Google Scholar 

  68. Abouimrane A, Belharouak I, Amine K (2009) Electrochem Commun 11:1073

    CAS  Google Scholar 

  69. Kawai H, Nagata M, Tabuchi M, Tukamoto H, West AR (1998) Chem Mater 10:3266

    CAS  Google Scholar 

  70. Amine K, Yasuda H, Yamachi M (2000) Electrochem Solid-State Lett 3:178

    CAS  Google Scholar 

  71. Bramnik NN, Nikolowski K, Baehtz C, Bramnik KG, Ehrenberg H (2007) Chem Mater 19:908

    CAS  Google Scholar 

  72. Yang J, Xu JJ (2006) J Electrochem Soc 153:A716

    CAS  Google Scholar 

  73. Butt GP, Sammes NM, Yamamoto O, Takeda Y, Imanishi N (1998) J Aust Ceram Soc 34:60

    CAS  Google Scholar 

  74. Delacourt C, Poizot P, Levasseur S, Masquelier C (2006) Electrochem Solid-State Lett 9:A352

    CAS  Google Scholar 

  75. Murugan AV, Muraliganth T, Manthiram A (2009) J Electrochem Soc 156:A79

    Google Scholar 

  76. Nuspl G, Tran N, Vogler C, Stinner C (2011) Carbon-lithium transition metal phosphate composite material having a low carbon content. Chem Abstr 155:688802 (WO/2011/147907, Dec 1, 2011)

    Google Scholar 

  77. Gangulibabu DB, Kalaiselvi N, Jayaprakash N, Periasamy P (2009) J Sol–Gel Sci Technol 49:137

    Google Scholar 

  78. Jingjing X, Chunyan L, Baofeng W, Honghua G, Qunjie X (2011) Modification of LiNiPO4 by metal doping and carbon coating. Int Conf Mater Renew Energy Environ (ICMREE) 1:708

    Google Scholar 

  79. Ravet N, Abouimrane A, Armand M (2003) Nat Mater 2:702

    CAS  Google Scholar 

  80. Muraliganth T, Manthiram A (2010) J Phys Chem C 114:15330

    Google Scholar 

  81. Bramnik NN, Trots DM, Hofmann HJ, Ehrenberg H (2009) Phys Chem Chem Phys 11:3271

    CAS  Google Scholar 

  82. Wolfenstine J, Allen J (2004) J Power Sources 136:150

    CAS  Google Scholar 

  83. Butt G, Sammes N, Tompsett G, Smirnova A, Yamamoto O (2004) J Power Sources 134:72

    CAS  Google Scholar 

  84. Fomin VI, Gnezdilov VP, Kurnosov VS, Peschanskii AV, Yeremenko AV (2002) Low Temp Phys 28:203

    CAS  Google Scholar 

  85. Sugiyama J, Nozaki H, Harada M, Kamazawa K, Ikedo Y, Miyake Y, Ofer O, Mansson M, Ansaldo EJ, Chow KH (2012) Phys Rev B 85:054111-1

    Google Scholar 

  86. Baker PJ, Franke I, Pratt FL, Lancaster T, Prabhakaran D, Hayes W, Blundell SJ (2011) Phys Rev B 84:174403-1

    Google Scholar 

  87. Gangadharan R, Chandrasekaran R, Vasudevan T (2004) Ionics 10:27

    CAS  Google Scholar 

  88. Goni A, Lezama L, Arriortua MI, Barberisa GE, Rojo T (2000) J Mater Chem 10:423

    CAS  Google Scholar 

  89. Minakshi M, Sharma N, Ralph D, Appadoo D, Nallathamby K (2011) Electrochem Solid-State Lett 14:A86

    CAS  Google Scholar 

  90. Xu K, Angell CA (2002) J Electrochem Soc 149:A920

    CAS  Google Scholar 

  91. Vaknin D, Zarestky JL, Ostenson JE, Chakoumakos BC, Goni A, Pagliuso PJ, Rojo T, Barberis GE (1999) Phys Rev B 60:1100

    CAS  Google Scholar 

  92. Deniard P, Dulac AM, Rocquefelte X, Grigorova V, Le Bacq O, Pasturel A, Jobic S (2004) J Phys Chem Solids 65:229

    CAS  Google Scholar 

  93. Evans JW, Dejonghe LC (1991) The production of inorganic materials. Macmillan, New York

    Google Scholar 

  94. Doeff MM, Yu Y, McLarnon F, Kostecki R (2003) Electrochem Solid-State Lett 6:A207

    CAS  Google Scholar 

  95. Bilecka I, Djerdj I, Niederberger M (2008) Chem Commun 44:886

  96. Panda AB, Glaspell G, El-Shall MS (2006) J Am Chem Soc 128:2790

    CAS  Google Scholar 

  97. Murugan AV, Muraliganth T, Manthiram A (2008) Electrochem Commun 10:903

    Google Scholar 

  98. Hamling BH (1973) Fibrous zirconia cement composites. Chem Abstr 77:141931 (US Patent 3,736,160, 29 May 1973)

    Google Scholar 

  99. Shanmukaraj D, Murugan R (2004) Ionics 10:88

    CAS  Google Scholar 

  100. Gong ZL, Li YX, Yang Y (2007) J Power Sources 174:524

    CAS  Google Scholar 

  101. Tsai A (2011) Synthesis and characterization of LiNiPO4 nanocrystals via microemulsion method as a new class of electrocatalyst for oxygen reduction. Master’s thesis, New Jersey Graduate School, New Brunswick

  102. Rangappa D, Sone K, Ichihara M, Kudo T, Honma I (2010) Chem Commun 46:7548

    CAS  Google Scholar 

  103. Lee J, Teja AS (2006) Mater Lett 60:2105

    CAS  Google Scholar 

  104. Chen JJ, Whittingham MS (2006) Electrochem Commun 8:855

    CAS  Google Scholar 

  105. Bach S, Henry M, Baffier N, Livage J (1990) J Solid State Chem 88:325

    CAS  Google Scholar 

  106. Zhu XJ, Chen HH, Zhan H, Liu HX, Yang DL, Zhou YH (2005) Chin J Chem 23:491

    CAS  Google Scholar 

  107. Jayaprakash N, Kalaiselvi N, Sun YK (2008) Electrochem Commun 13:455

    Google Scholar 

  108. Liu H, Wu YP, Rahm E, Holze R, Wu HQ (2004) J Solid State Electrochem 8:450

    CAS  Google Scholar 

  109. Pechini MP (1967) Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor. US Patent 3,330,697, 11 July 1967

  110. Liu W, Farrington GC, Chaput F, Dunn B (1996) J Electrochem Soc 143:884

    Google Scholar 

  111. Prabu M, Selvasekarapandian S, Kulkarni AR, Karthikeyan S, Sanjeeviraja C (2012) Trans Nonferrous Met Soc China 22:342

    CAS  Google Scholar 

  112. Prabu M, Selvasekarapandian S (2012) Mater Chem Phys 134:366

    CAS  Google Scholar 

  113. Jiang J, Ouyang C, Li H, Wang Z, Huang X, Chen L (2007) Solid State Commun 143:144

    CAS  Google Scholar 

  114. Jayaprakash N, Kalaiselvi N, Periasamy P (2008) Nanotechnology 19:1

    Google Scholar 

  115. Angaiah S, Thiagarajan V, Ramaiyer G, Ariyanan M (2002) Process for the preparation of olivine lithium nickel phosphate composite. Chem Abstr 137:265713 (US Patent 6,485,699 B2, 26 Nov 2002)

    Google Scholar 

  116. Gnanaraj JS, Zinigrad E, Levi MD, Aurbach D, Schmidt M (2003) J Power Sources 119–121:799

    Google Scholar 

  117. Gnanaraj JS, Levi MD, Gofer Y, Aurbach D, Schmidt M (2003) J Electrochem Soc 150:A445

    CAS  Google Scholar 

  118. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M, Ignat’ev N, Sartori P (2001) J Power Sources 97–98:557002E

    Google Scholar 

Download references

Acknowledgments

The author (S. M. Rommel) wants to thank Clariant Produkte (Deutschland) GmbH for financial support. Martina Andratschke is gratefully acknowledged for XRD measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Weihrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rommel, S.M., Schall, N., Brünig, C. et al. Challenges in the synthesis of high voltage electrode materials for lithium-ion batteries: a review on LiNiPO4 . Monatsh Chem 145, 385–404 (2014). https://doi.org/10.1007/s00706-013-1134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1134-0

Keywords

Navigation