Monatshefte für Chemie - Chemical Monthly

, Volume 145, Issue 3, pp 457–463 | Cite as

Correlation between 13C NMR chemical shifts and antiradical activity of flavonoids

  • Bono Lučić
  • Višnja Stepanić
  • Dejan Plavšić
  • Ana Amić
  • Dragan Amić
Original Paper


The 13C NMR chemical shifts of a range of flavonoids are predicted by the Mnova NMRPredict software and related to their radical scavenging activity (RSA). 13C NMR chemical shifts of C atoms bearing phenolic OH groups associated with radical attack tend to decrease with increasing antiradical activity. For a data set of 27 flavonoids, fair correlation (r = −0.881) was found between the antiradical activity and minimal value of the 13C NMR chemical shift (NMR min), and it was similar to the correlation (r = −0.850) obtained with the minimal O–H bond dissociation enthalpy (BDE min) calculated by the PM7 method. For a particular flavonoid molecule, 13C NMR chemical shifts of C atoms bearing phenolic OH groups correlate nicely with the corresponding O–H BDEs (e.g., for robinetin r = 0.953). For the complete data set, there is a similar correlation between NMR min and BDE min values (r = 0.944). As a rule, NMR min is related to nuclei bearing a 3′,4′-dihydroxy moiety in the B ring or 3-OH phenolic group in the C ring, i.e., to the preferred sites of radical attack. Thus, the 13C NMR chemical shifts of C atoms bearing phenolic OH groups are in accordance with the O–H BDEs, i.e., describe the H atom donor ability of phenolic OH groups. The statistical significance of the relationship between the minimal 13C NMR chemical shift and RSA was verified by comparison with correlations between RSA and each of 1,140 Dragon molecular descriptors, where the highest correlation coefficient of 0.812 was obtained.

Graphical abstract


Flavonoids Antiradical activity 13C NMR chemical shift MNova QSAR BDE 



This work was supported by grants 098-1770495-2919, 098-0982929-2917, 098-0982464-2511 and 079-0000000-3211 awarded by the Ministry of Science, Education and Sports of the Republic of Croatia. The authors thank Mestrelab Research S.L. for the free demonstration version of the MestReNova LITE program. We also gratefully acknowledge the anonymous reviewers for their constructive comments.

Supplementary material

706_2013_1130_MOESM1_ESM.doc (552 kb)
Supplementary material 1 (DOC 551 kb)
706_2013_1130_MOESM2_ESM.xls (445 kb)
Supplementary material 2 (XLS 445 kb)


  1. 1.
    Halliwell B (2009) Free Radic Biol Med 46:531CrossRefGoogle Scholar
  2. 2.
    Havsteen BH (2002) Pharmacol Ther 96:67CrossRefGoogle Scholar
  3. 3.
    Williams RJ, Spencer JPE, Rice-Evans C (2004) Free Radic Biol Med 36:838CrossRefGoogle Scholar
  4. 4.
    Cazarolli LH, Zanatta L, Alberton EH, Figueiredo MSRB, Folador P, Damazio RG, Pizzolatti MG, Silva FRMB (2008) Mini Rev Med Chem 8:1429CrossRefGoogle Scholar
  5. 5.
    Bors W, Heller W, Michel C, Saran M (1990) Flavonoids as antioxidants: determination of radical-scavenging efficiencies. In: Packer L, Glazer AN (eds) Methods in enzymology, vol 186. Academic Press, San Diego, p 343Google Scholar
  6. 6.
    Amić D, Davidović-Amić D, Bešlo D, Rastija V, Lučić B, Trinajstić N (2007) Curr Med Chem 14:827CrossRefGoogle Scholar
  7. 7.
    Zhang H-Y, Ji H-F (2006) New J Chem 30:503CrossRefGoogle Scholar
  8. 8.
    Litwinienko G, Ingold KU (2007) Acc Chem Res 40:222CrossRefGoogle Scholar
  9. 9.
    Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güclü K (2013) Pure Appl Chem 85:957CrossRefGoogle Scholar
  10. 10.
    Amić D, Lučić B (2010) Bioorg Med Chem 18:28CrossRefGoogle Scholar
  11. 11.
    Prabhakar YS, Gupta MK (2008) Sci Pharm 76:101CrossRefGoogle Scholar
  12. 12.
    Fossen T, Andersen ØM (2006) Spectroscopic techniques applied to flavonoids. In: Andersen ØM, Markham KR (eds) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton, p 37Google Scholar
  13. 13.
    March R, Brodbelt J (2008) J Mass Spectrom 43:1581CrossRefGoogle Scholar
  14. 14.
    Agrawal PK (1989) Carbon-13 NMR of Flavonoids. Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Ternai B, Markham KR (1976) Tetrahedron 32:565CrossRefGoogle Scholar
  16. 16.
    Markham KR, Ternai B (1976) Tetrahedron 32:2607CrossRefGoogle Scholar
  17. 17.
    Markham KR, Ternai B, Stanley R, Geiger H, Mabry TJ (1978) Tetrahedron 34:1389CrossRefGoogle Scholar
  18. 18.
    Agrawal PK, Schneider H-J (1983) Tetrahedron Lett 24:177CrossRefGoogle Scholar
  19. 19.
    Markham KR, Sheppard C, Geiger H (1987) Phytochemistry 26:3335CrossRefGoogle Scholar
  20. 20.
    Wawer I, Zielinska A (1997) Solid State NMR 10:33CrossRefGoogle Scholar
  21. 21.
    Wawer I, Zielinska A (2001) Magn Reson Chem 39:374CrossRefGoogle Scholar
  22. 22.
    Park Y, Moon B-H, Lee E, Lee Y, Yoon Y, Ahn J-H, Lim Y (2007) Magn Reson Chem 45:674CrossRefGoogle Scholar
  23. 23.
    Burns DC, Ellis DA, March RE (2007) Magn Reson Chem 45:835CrossRefGoogle Scholar
  24. 24.
    Zhou X, Peng J, Fan G, Wu Y (2005) J Chromatogr A 1092:216CrossRefGoogle Scholar
  25. 25.
    Lee S, Park Y, Moon B-H, Lee E, Hong S, Lim Y (2008) Bull Korean Chem Soc 29:1597CrossRefGoogle Scholar
  26. 26.
    Price KR, Rhodes MJC (1997) J Sci Food Agric 74:331CrossRefGoogle Scholar
  27. 27.
    Aksnes DW, Standnes A, Andersen ØM (1996) Magn Reson Chem 34:820CrossRefGoogle Scholar
  28. 28.
    Moon B-H, Lee Y, Ahn J-H, Lim Y (2006) Magn Reson Chem 44:99CrossRefGoogle Scholar
  29. 29.
    Verma RP, Hansch C (2011) Chem Rev 111:2865CrossRefGoogle Scholar
  30. 30.
    Burda S, Oleszek W (2001) J Agric Food Chem 49:2774CrossRefGoogle Scholar
  31. 31.
    Mestrelab Research, MNova Version: 5.2.5-4731,
  32. 32.
    Zielinski R, Szymusiak H (2003) Pol J Food Nutr Sci 12/53:157Google Scholar
  33. 33.
    Musialik M, Kuzmicz R, Pawlowski TS, Litwinienko G (2009) J Org Chem 74:2699CrossRefGoogle Scholar
  34. 34.
    Wright JS, Johnson ER, DiLabio GA (2001) J Am Chem Soc 123:1173CrossRefGoogle Scholar
  35. 35.
    Košinova P, Di Meo F, Anouar EH, Duroux J-L, Trouillas P (2011) Int J Quantum Chem 111:1131CrossRefGoogle Scholar
  36. 36.
    Stepanić V, Gall Trošelj K, Lučić B, Marković Z, Amić D (2013) Food Chem 141:1562CrossRefGoogle Scholar
  37. 37.
    Amić D, Stepanić V, Lučić B, Marković Z, Dimitrić Marković JM (2013) J Mol Model 19:2593CrossRefGoogle Scholar
  38. 38.
    Cobos CJ, Capparelli AL (1995) J Fluor Chem 70:155CrossRefGoogle Scholar
  39. 39.
    Amić D, Davidović-Amić D, Bešlo D, Trinajstić N (2003) Croat Chem Acta 76:55Google Scholar
  40. 40.
    Armaković S, Armaković SJ, Šetrajčić JP, Šetrajčić IJ (2012) J Mol Model 18:4491CrossRefGoogle Scholar
  41. 41.
    Talete srl, DRAGON 5.4,
  42. 42.
    Claridge T (2009) J Chem Inf Model 49:1136CrossRefGoogle Scholar
  43. 43.
    Stewart JJP (2013) J Mol Model 19:1CrossRefGoogle Scholar
  44. 44.
  45. 45.
    Todeschini R, Consonni V (2000) Handbook of molecular descriptors. Wiley-VCH, WeinheimCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2014

Authors and Affiliations

  1. 1.NMR Center, Rudjer Bošković InstituteZagrebCroatia
  2. 2.Division of Molecular MedicineRudjer Bošković InstituteZagrebCroatia
  3. 3.Department of BiologyThe Josip Juraj Strossmayer UniversityOsijekCroatia
  4. 4.Faculty of AgricultureThe Josip Juraj Strossmayer UniversityOsijekCroatia

Personalised recommendations