Skip to main content
Log in

Solidification of hot real radioactive liquid scintillator waste using cement–clay composite

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Cementation of hazardous organic liquid wastes such as radioactive liquid scintillator is receiving increasing importance. Using clay as natural adsorbent to improve the incorporation process of these organic wastes into cement paste was performed. The waste form composed of water/cement at the ratio 0.3 with 3 % solid natural clay by the weight of cement and incorporating up to 15 % real spent organic liquid scintillator waste by the weight of cement-based paste was prepared. The temperature changes accompanying with the cementation process were followed. The nominated solidified cement–clay composite was also subjected to free falling test at different heights to evaluate its structural stability during unexpected transportation events or disposal site impacts. Scanning electron microscopy and X-ray investigations were used to evaluate the microstructure of the composite. The results revealed that the proposed cement–clay composite could be nominated structurally as a durable matrix for incorporating up to 15 % of liquid scintillator safely.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saleh HM, Tawfik ME, Bayoumi TA (2011) J Nucl Mater 411:185

    Article  CAS  Google Scholar 

  2. Eskander SB, Bayoumi TA, Saleh HM (2012) J Nucl Mater 420:175

    Article  CAS  Google Scholar 

  3. Eskander SB, Saleh HM (2012) J Nucl Mater 420:491

    Article  CAS  Google Scholar 

  4. Saleh HM, Bayoumi TA, Shatta HA (2012) Adv Chem Sci 1:12

    Google Scholar 

  5. Saleh HM, Eskander SB (2012) J Nucl Mater 430:106

    Article  CAS  Google Scholar 

  6. Lopes I, Madruga MJ (2009) Application of liquid scintillation counting technique to the determination of 90Sr in milk samples. In: Eikenberg J, Jäggi M, Beer H, Baehrle H (eds) Advances in liquid scintillation spectrometry. Radiocarbon Publishers, University of Arizona, Tucson

    Google Scholar 

  7. Moreno HP, Absi A, Vioque I, Manjón G, García-Tenorio R (2000) J Radioanal Nucl Chem 245:309

    Article  CAS  Google Scholar 

  8. Xiaolin H (2009) Liquid scintillation counting for the determination of beta emitter principle and application. In: NKS-B-Radwork Shop-8, 19 November, Riso National Laboratory for Sustainable Energy, Technical University of Denmark

  9. Teoreau I, Deneanu N, Dulama M (2010) Romanian J Mater 40:112

    CAS  Google Scholar 

  10. International Atomic Energy Agency (2002) IAEA-TECDOC-1325. IAEA, Vienna

    Google Scholar 

  11. International Atomic Energy Agency (2003) IAEA-TECDOC-1336. IAEA, Vienna

    Google Scholar 

  12. International Atomic Energy Agency (1992) IAEA-TECDOC-656. IAEA, Vienna

    Google Scholar 

  13. International Atomic Energy Agency (1989) IAEA-TRS-294. IAEA, Vienna

    Google Scholar 

  14. Lin M, MacKenzie DR (1983) Tests of absorbents and solidification techniques for oil wastes. Brookhaven National Laboratory, US Nuclear Regulatory Commission. Division of Waste Management, Rep. BNL-NUREG-51589, Brookhaven National Lab, Upton, NY

  15. Paria S, Yuet PK (2006) Environ Rev 14:217

    Article  CAS  Google Scholar 

  16. Eskander SB, Ghattas NK (2002) Radioact Waste Manag 22:327

    Article  CAS  Google Scholar 

  17. Eskander SB, Abdel Aziz SM, El-Didamony H, Sayed MI (2011) J Hazard Mater 190:969

    Article  CAS  Google Scholar 

  18. El-Didamony H, Bayoumi TA, Sayed MI (2012) ISRN Chem Eng 2012

  19. Eskander SB, Bayoumi TA, Saleh HM (2013) Prog Nucl Energy 67:1

    Article  CAS  Google Scholar 

  20. Bayoumi TA (2009) Isotope Radiat Res 41:253

    Google Scholar 

  21. Noakes JE (1983) Disposal of radioactive aromatic liquid wastes. US Patent 4,416,810, 22 Nov 1983; (1984) Chem Abstr 100:41535

  22. Dotelli G, Stampino PG, Zampori L, Sora IN, Pelosato R (2008) Waste Manag Res 26:515

    Article  CAS  Google Scholar 

  23. Plecas I, Dimovic S (2006) Influence of natural sorbents in immobilization of radioactive waste in cement. In: Proceedings of the International Conference Nuclear Energy for New Europe, Portorož, Slovenia, 18–21 Sep 2006

  24. Li JF, Ye YC, Wang JL (2006) Progress in solidification of radioactive waste resins using specific cement. Waste Management Symposium, Tucson, 26 Feb–2 Mar 2006

  25. Sora IN, Pelosato R, Botta D, Dotelli G (2002) J Eur Ceram Soc 22:1463

    Article  Google Scholar 

  26. International Atomic Energy Agency (2005) IAEA Safety standards series No. TS-R-1. IAEA, Vienna

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Saleh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bayoumi, T.A., Saleh, H.M. & Eskander, S.B. Solidification of hot real radioactive liquid scintillator waste using cement–clay composite. Monatsh Chem 144, 1751–1758 (2013). https://doi.org/10.1007/s00706-013-1065-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1065-9

Keywords

Navigation