Skip to main content
Log in

Reaching for cyclacenes and short nanotubes through Si substitutions as studied by DFT calculations

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Based on density functional theory (DFT) calculations, [6]6–10 cyclacenes are made more stable through alternate Si atom substitutions. The ground states of the latter are singlet closed-shell, while those of the former appear singlet open-shell. Concurrently, the strain energies of the Si-substituted species are smaller while their band gaps are larger than for the unsubstituted analogs. Similarly, silicon substitutions show stabilizing effects on [6] n carbon nanotubes, albeit to a lesser extent.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Heilbronner E (1954) Helv Chim Acta 37:921

    Article  CAS  Google Scholar 

  2. Tahara K, Tobe Y (2006) Chem Rev 106:5274

    Article  CAS  Google Scholar 

  3. Gleiter R, Hellbach B, Gath S, Schaller R (2006) Pure Appl Chem 78:699

    Article  CAS  Google Scholar 

  4. Herges R, Gleiter R, Hopf H (2004) In: Modern Cyclophane Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  5. Esser B, Rominger F, Gleiter R (2008) J Am Chem Soc 130:6716

    Article  CAS  Google Scholar 

  6. Türker L (1997) Polycycl Aromat Comp 12:213

    Article  Google Scholar 

  7. Choi HS, Kim K (1999) Angew Chem Int Ed 38:2256

    Article  CAS  Google Scholar 

  8. Loh KP, Yang SW, Soon JM, Zhang H, Wu P (2003) J Phys Chem A 107:5555

    Article  CAS  Google Scholar 

  9. Chen Z, Jiang D, Lu X, Bettinger HF, Dai S, Schleyer PV, Houk KN (2007) Org Lett 9:5449

    Article  CAS  Google Scholar 

  10. Esser B, Rskatov JA, Gleiter R (2007) Org Lett 9:4037

    Article  CAS  Google Scholar 

  11. Kornmayer SC, Esser B, Gleiter R (2009) Org Lett 11:725

    Article  CAS  Google Scholar 

  12. Kassaee MZ, Aref Rad H, Soleimani Amiri S (2010) Monatsh Chem 141:1313

    Article  CAS  Google Scholar 

  13. Che RC, Peng LM, Wang MS (2004) Appl Phys Lett 85:4753

    Article  CAS  Google Scholar 

  14. Kassaee MZ, Arefrad H, Ghambarian M (2007) Int J Quantum Chem 108:696

    Article  Google Scholar 

  15. Türker L, Gümüs S (2004) J Mol Struct 685:1

    Article  Google Scholar 

  16. Chan LH, Hong KH, Xiao DQ, Lin TC, Lai SH, Hsieh WJ, Shih HC (2004) Phys Rev B 70:125408

    Article  Google Scholar 

  17. Choi HC, Bae SY, Park J, Seo K, Kim C, Kim B, Song HJ, Shin HJ (2004) Appl Phys Lett 85:5742

    Article  CAS  Google Scholar 

  18. Kang HS, Jeong S (2004) Phys Rev B 70:233411

    Article  Google Scholar 

  19. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millan JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelly C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98. Gaussian Inc., Pittsburgh

    Google Scholar 

  20. Carpenter JE, Weinhold FJ (1988) J Mol Struct 41:169

    Google Scholar 

  21. Glendening ED, Reed AE, Carpenter JE, Weinhold F (2010) NBO version 3.1

  22. Sen R, Satishkumar BC, Govindaraj A, Harikumar KR, Raina G, Zhang JP, Cheetham AK, Rao CNR (1998) Chem Phys Lett 287:671

    Article  CAS  Google Scholar 

  23. Hariharan PC, Pople JA (1974) Mol Phys 27:209

    Article  CAS  Google Scholar 

  24. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) J Chem Phys 77:3654

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ms. M. Koohi, Ms. M. Majdi, and B.N. Haerizade for their stimulating and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Z. Kassaee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

706_2013_1046_MOESM1_ESM.docx

List of absolute energies, Cartesian coordinates, and strain energy for all calculated species presented in this work (45 pages).(DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kassaee, M.Z., Zandi, H., Aref Rad, H. et al. Reaching for cyclacenes and short nanotubes through Si substitutions as studied by DFT calculations. Monatsh Chem 144, 1783–1786 (2013). https://doi.org/10.1007/s00706-013-1046-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1046-z

Keywords

Navigation