Skip to main content
Log in

A comparative study on the antioxidant properties of bractein and cernuoside by the DFT method

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory was employed to investigate the molecular properties of two flavonoids, bractein and cernuoside, that serve as antioxidants. The B3LYP/6-311G** protocol was used for all computations. Investigations were performed in the gas phase and in two solvents with different polarity (water and benzene); the present work was devoted mainly to the determination of the O–H bond dissociation enthalpies and the ionization potentials of the examined compounds, since these quantities represent the most important parameters on which biological activity can be rationalized. The rotational energy of pyrogallol and catechol moieties together with highest occupied molecular orbital–lowest unoccupied molecular orbital and dipole moment analysis are reported for the two flavonoids. The present analysis also includes the spin density distribution for the radicals formed after H atom removal on each OH site of both flavonoids. The theoretical bond dissociation enthalpy values for these systems follow the same trend in gas and solvent phases. On the basis of computed bond dissociation enthalpy and ionization potential values, the most reactive system that is able to transfer an H-atom and electron transfer mechanism is found to be bractein followed by cernuoside. All these results suggest bractein to be a potential antioxidant similar to quercetin.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Robbins RJ (2003) J Agr Food Chem 51:2866

    Article  CAS  Google Scholar 

  2. Macheix JJ, Fleuriet A, Billot J (1990) Fruit phenolics. CRC, Boca Raton

    Google Scholar 

  3. Havsteen B (1983) Biochem Pharmacol 23:1141

    Article  Google Scholar 

  4. Cody V, Middleton EJR, Harborne JB, Beretz A (1988) Plant flavonoids in biology and medicine II: biochemical, cellular and medicinal properties. Liss, New York

  5. Rice-Evans CA, Miller NJ (1996) Biochem Soc Trans 24:790

    CAS  Google Scholar 

  6. Pietta P (2000) J Nat Prod 63:1035

    Article  CAS  Google Scholar 

  7. Cao H, Chiang W-X, Pan X-L, Xie X-G, Li T-H (2005) J Mol Struct (Theochem) 719:177

    Article  CAS  Google Scholar 

  8. Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine, 3rd edn. Oxford University Press, New York

  9. Fang YZ, Zheng RL (2002) Theory and application of free radical biology. Science, Beijing

    Google Scholar 

  10. Scott G (1988) Bull Chem Soc Jpn 61:165

    Article  CAS  Google Scholar 

  11. Shahidi F (1997) Natural antioxidants: chemistry, health effects and applications. American Oil Chemists Society, Champaign

    Google Scholar 

  12. Thomas CE (1997) In: Packer L, Cadenas E (eds) Handbook of synthetic antioxidants. Dekker, New York

  13. Haslam E (1998) Practical polyphenolics. Cambridge University Press, Cambridge

    Google Scholar 

  14. Garrote G, Cruz JM, Moure A, Dominguez H, Parajo JC (2004) Trends Food Sci Technol 15:191

    Article  CAS  Google Scholar 

  15. Soobrattee MA, Neergheen VS, Luximon-Ramma A, Aruoma OI, Bahorun T (2005) Mut Res 579:177

    Google Scholar 

  16. Pietta P, Simonetti P, Maury P (1998) J Agric Food Chem 46:4487

    Article  CAS  Google Scholar 

  17. Lee KG, Mitchell AE, Shibamoto T (2000) J Agric Food Chem 48:4817

    Article  CAS  Google Scholar 

  18. Lee J, Koo N, Min DB (2004) Comp Rev Food Sci Food Saf 3:21

    Article  CAS  Google Scholar 

  19. Sidduraju P (2007) LWT Food Sci Technol 40:982

    Article  Google Scholar 

  20. Trouillas P, Marsal P, Siri D, Lazzaaroni R, Duroux JL (2006) Food Chem 97:679 (and references therein)

    Google Scholar 

  21. Mendoza-Wilson AM, Glossman-Mitnik D (2004) J Mol Struct (Theochem) 681:71

    Article  CAS  Google Scholar 

  22. Mendoza-Wilson AM, Glossman-Mitnik D (2006) J Mol Struct (Theochem) 761:97

    Article  CAS  Google Scholar 

  23. Espinosa-Garcia J (2004) J Am Chem Soc 126:920

    Article  CAS  Google Scholar 

  24. Foti MC, Ingold KU (2003) J Agric Food Chem 51:2758

    Article  CAS  Google Scholar 

  25. Hussain HH, Babic G, Durst T, Wright JS, Flueraru M, Chichirau A, Chepelev LL (2003) J Org Chem 68:7023

    Article  CAS  Google Scholar 

  26. Sun YM, Zhang HY, Chen DZ, Liu CB (2002) Org Lett 4:2909

    Article  CAS  Google Scholar 

  27. Wright JS, Johnson ER, Dilabio GA (2001) J Am Chem Soc 123:1173

    Article  CAS  Google Scholar 

  28. Pratt DA, Dilabio GA, Brigati G, Pedulli GF, Valgimigli L (2001) J Am Chem Soc 123:4625

    Article  CAS  Google Scholar 

  29. Brigati G, Lucarini M, Mugnaini V, Pedulli GF (2002) J Org Chem 67:4828

    Article  CAS  Google Scholar 

  30. Bosque R, Sales J (2003) J Chem Inf Comput Sci 43:637

    Article  CAS  Google Scholar 

  31. Bohm BA (1998) Introduction to flavonoids, chap 2. Harwood, Singapore

  32. Robards K, Antolovich M (1997) Analyst 122:11R

    Article  CAS  Google Scholar 

  33. Van Acker SABE, Bast A, Van der Vijgh WJF (1998) Structural aspects of antioxidant activity of flavonoids. In: Rice-Evans CA, Packer L (eds) Flavonoids in health and disease. Dekker, New York, p 221

    Google Scholar 

  34. Gunesekaran R, Ubeda A, Alcaraz MJ, Jayaprakasam R, Ramachandran Nair AG (1993) Pharmazie 48:230

    Google Scholar 

  35. Van Acker SABE, De Groot MJ, Van den Berg DJ, Tromp MNJL, Den Kelder GDO, Van der Vijgh WJF, Bast A (1996) Chem Res Toxicol 9:1305

    Article  Google Scholar 

  36. Martins HFP, Leal JP, Fernandez MT, Lobes VHC, Cordeiro MNDS (2004) J Am Chem Soc Mass Spectrum 15:848

    Article  CAS  Google Scholar 

  37. Su X-F, Zhang H, Shao J-X, Wu H-Y (2007) J Mol Struct (Theochem) 847:59

    Article  CAS  Google Scholar 

  38. Gotoch N, Noguchi N, Tsuchiya J, Morita H, Sakai K, Shimasaki H, Niki E (1996) Free Radical Res 24:123

    Article  Google Scholar 

  39. Noguchi N, Okimoto Y, Tsuchiya J, Cynshi O, Kodama T, Niki E (1997) Arch Biochem Biophys 347:141

    Article  CAS  Google Scholar 

  40. Nsangou M, Dhaouadi Z, Jaidane N, Ben Lakhdar Z (2008) J Mol Struct (Theochem) 850:135

    Article  CAS  Google Scholar 

  41. Nsangou M, Fifen JJ, Dhaouadi Z, Lahmar S (2008) J Mol Struct (Theochem) 862:53

    Article  CAS  Google Scholar 

  42. Balkabassis EG, Chatzopoulou A, Melissas VS, Tsimidou M, Tsolaki M, Vafiadis A (2001) Lipids 36:181

    Article  Google Scholar 

  43. Balkabassis EG, Nemadis E, Tsimidou M (2003) J Am Oil Chem Soc 80:451

    Article  Google Scholar 

  44. Mendoza-Wilson AM, Glossman-Mitnik D (2005) J Mol Struct (Theochem) 716:67

    Article  CAS  Google Scholar 

  45. Rice-Evans CA, Miller NJ, Paganga G (1996) Free Radic Biol Med 20:933

    Article  CAS  Google Scholar 

  46. Kozlowski D, Marsal P, Steel M, Mokrini R, Duroux JL, Lazzaroni R, Trouillas P (2007) Radiat Res 168:243

    Article  CAS  Google Scholar 

  47. Mendoza-Wilson AM, Lardizabal-Gutierrez D, Torres-Moye E, Fuentes-Cobas L, Balandran-Quintana RR, Camacho-Davila A, Quintero-Ramos A, Glossman-Mitnik D (2007) J Mol Struct 871:114

    Article  CAS  Google Scholar 

  48. Abraham MH, Grellier PL, Prior DV, Morris JJ, Taylor PJ (1990) J Chem Soc Perkin Trans 2:521

    Google Scholar 

  49. Borges JEM, Borges RS, Alves CN (2004) J Mol Struct (Theochem) 673:93

    Article  Google Scholar 

  50. Parkinson CJ, Mayer PM, Random L (1999) J Chem Soc Perkin Trans 2:2305

    Google Scholar 

  51. Russo N, Toscano M, Uccella N (2000) J Agri Food Chem 48:3232

    Article  CAS  Google Scholar 

  52. Andersson MP, Uvdal P (2005) J Phys Chem A 109:2937

    Article  CAS  Google Scholar 

  53. Dilabio GA, Pratt DA, LoFaro AD, Wright JS (1999) J Phys Chem A 103:1653

    Article  CAS  Google Scholar 

  54. Feng Y, Liu L, Wang JT, Huang H, Guo QX (2003) J Chem Inf Comput Sci 43:2005

    Article  CAS  Google Scholar 

  55. Leopoldini M, Prieto Pitarch I, Russo N, Toscano M (2004) J Phys Chem B 108:92

    Article  CAS  Google Scholar 

  56. Leopoldini M, Marino T, Russo N, Toscano M (2004) J Phys Chem B 108:4916

    CAS  Google Scholar 

  57. Leopoldini M, Marino T, Russo N, Toscano M (2004) Theor Chem Acc 111:210

    Article  CAS  Google Scholar 

  58. Shen L, Zhang H-Y, Ji H-F (2008) J Mol Struct (Theochem) 856:119

    Article  CAS  Google Scholar 

  59. Scott AP, Randon L (2005) J Phys Chem 100:16502

    Article  Google Scholar 

  60. Parr RG, Donnelly RA, Levy M, Palke WE (1978) J Chem Phys 68:3801

    Article  CAS  Google Scholar 

  61. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  62. Parr RG, Szentpaly LV, Liu SRG (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  63. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham M, Peng CY, Nanayakkara A, Gonzales C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2005) Gaussian 03, Revision D01. Gaussian, Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Kumaresan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senthil kumar, K., Kumaresan, R. A comparative study on the antioxidant properties of bractein and cernuoside by the DFT method. Monatsh Chem 144, 1513–1524 (2013). https://doi.org/10.1007/s00706-013-1024-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-1024-5

Keywords

Navigation