Skip to main content
Log in

CTAB-assisted synthesis and characterization of Bi2WO6 photocatalysts grown from WO3·0.33H2O nanoplate precursors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Using WO3·0.33H2O nanoplates as precursors in cetyltrimethylammonium bromide (CTAB)-assisted processes, bismuth tungstate (Bi2WO6) nanonests and nanosheets were successfully prepared by a facile hydrothermal method, followed by characterization by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectra, nitrogen adsorption–desorption [Brunauer–Emmett–Teller (BET)] analysis, and UV–Vis diffuse reflectance spectra. The results indicated that the concentration of cetyltrimethylammonium bromide played a major role in the formation of Bi2WO6 nanonests. A possible formation mechanism is presented on the basis of the experimental results. The photocatalytic activities of the resulting Bi2WO6 nanostructures were also evaluated by photodegradation of methylene blue under visible-light irradiation. Bi2WO6 nanonests showed higher photocatalytic activity than Bi2WO6 nanosheets, because of their higher surface area and special structure.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tong H, Ouyang SX, Bi YP, Umezawa N, Oshikiri M, Ye JH (2012) Adv Mater 24:229

    Article  CAS  Google Scholar 

  2. Osterloh FE (2008) Chem Mater 20:35

    Article  CAS  Google Scholar 

  3. Li XZ, Li FB (2001) Environ Sci Technol 35:2381

    Article  CAS  Google Scholar 

  4. Yang PD (2003) Nature 425:243

    Article  CAS  Google Scholar 

  5. Tang JW, Zou ZG, Ye JH (2004) Catal Lett 92:53

    Article  CAS  Google Scholar 

  6. Sun YG, Xia YN (2002) Science 298:2176

    Article  CAS  Google Scholar 

  7. Kudo A, Hijii S (1999) Chem Lett 10:1103

    Article  Google Scholar 

  8. Zhang C, Zhu YF (2005) Chem Mater 17:3537

    Article  CAS  Google Scholar 

  9. Ma DK, Huang SM, Chen WX, Hu SW, Shi FF, Fan KL (2009) J Phys Chem C 113:4369

    Article  CAS  Google Scholar 

  10. Fu HB, Zhang SC, Xu TG, Zhu YF, Chen JM (2008) Environ Sci Technol 42:2085

    Article  CAS  Google Scholar 

  11. Shi R, Huang GL, Lin J, Zhu YF (2009) J Phys Chem C 113:19633

    Article  CAS  Google Scholar 

  12. Shang M, Wang WZ, Zhang L, Xu HL (2010) Mater Chem Phys 120:155

    Article  CAS  Google Scholar 

  13. Guo S, Li XF, Wang HQ, Dong F, Wu ZB (2012) J Colloid Interface Sci 369:373

    Article  CAS  Google Scholar 

  14. Zhu SB, Xu TG, Fu HB, Zhao JC, Zhu YF (2007) Environ Sci Technol 41:6234

    Article  CAS  Google Scholar 

  15. Xiao Q, Zhang J, Xiao C, Tan XK (2008) Catal Commun 9:1247

    Article  CAS  Google Scholar 

  16. Guo YD, Zhang GK, Gan HH (2012) J Colloid Interface Sci 369:323

    Article  CAS  Google Scholar 

  17. Gao E, Wang W, Shang M, Xu J (2011) Phys Chem Chem Phys 13:2887

    Article  CAS  Google Scholar 

  18. Chen Z, Qian LW, Zhu J, Yuan YP, Qian XF (2010) Cryst Eng Comm 12:2100

    Article  CAS  Google Scholar 

  19. Xu L, Yang XY, Zhai Z, Hou WH (2011) Cryst Eng Comm 13:7267

    Article  CAS  Google Scholar 

  20. Zhou Y, Tian ZP, Zhao ZY, Liu Q, Kou JH, Chen XY, Gao J, Yan SC, Zou ZG (2011) ACS Appl Mater Interfaces 3:3594

    Article  CAS  Google Scholar 

  21. Zhou L, Zou J, Yu MM, Lu P, Wei J, Qian YQ, Wang YH, Yu CZ (2008) Cryst Growth Des 8:3993

    Article  CAS  Google Scholar 

  22. Yu CL, Yu JC, Zhou WQ, Yang K (2010) Catal Lett 140:172

    Article  CAS  Google Scholar 

  23. Yu CL, Fan CF, Yu JC, Zhou WQ, Yang K (2011) Mater Res Bull 46:140

    Article  CAS  Google Scholar 

  24. Wu J, Duan F, Zheng Y, Xie Y (2007) J Phys Chem C 111:12866

    Article  CAS  Google Scholar 

  25. Amano F, Nogami K, Ohtani B (2009) J Phys Chem C 113:1536

    Article  CAS  Google Scholar 

  26. Halder M (2007) Chem Educ 12:33

    CAS  Google Scholar 

  27. Zhang L, Wang H, Chen Z, Wong PK, Liu J (2011) Appl Catal B 106:1

    Article  CAS  Google Scholar 

  28. Li GW, Li CS, Tang H, Cao KS, Chen J, Wang FF, Jin Y (2010) J Alloys Compd 501:275

    Article  CAS  Google Scholar 

  29. Díaz-Reyes J, Dorantes-García V, Pérez-Benítez A, Balderas-López JA (2008) Superf Vacío 21:12

    Google Scholar 

  30. Zheng Y, Duan F, Wu J, Liu L, Chen MQ, Xie Y (2009) J Mol Catal A-Chem 303:9

    Article  CAS  Google Scholar 

  31. Maczka M, Macalik L, Hermanowicz K, Kepinski L, Tomaszewski P (2010) J Raman Spectrosc 41:1059

    Article  CAS  Google Scholar 

  32. Huang H, Chen HF, Xia Y, Tao XY, Gan YP, Weng XX, Zhang WK (2012) J Colloid Interface Sci 370:132

    Article  CAS  Google Scholar 

  33. Li G, Zhang D, Yu JC, Leung MKH (2010) Environ Sci Technol 44:4276

    Article  CAS  Google Scholar 

  34. Fu HB, Pan CS, Yao WQ, Zhu YF (2005) J Phys Chem B 109:22432

    Article  CAS  Google Scholar 

  35. Fu HB, Lin J, Zhang LW, Zhu YF (2006) Appl Catal A 306:58

    Article  CAS  Google Scholar 

  36. Zhang LW, Zhu YF (2012) Catal Sci Technol 2:694

    Article  CAS  Google Scholar 

  37. Yu CL, Fan CF, Meng XJ, Yang K, Cao FF, Li X (2011) React Kinet Mech Cat 103:141

    Article  CAS  Google Scholar 

  38. Ollis DF (1985) Environ Sci Technol 19:480

    Article  CAS  Google Scholar 

  39. Yu JG, Yu JC, Ho WK, Wu L, Wang XC (2004) J Am Chem Soc 126:3422

    Article  CAS  Google Scholar 

  40. Huo Q, Margolese DI, Ciesla U, Demuth DG (2004) Nature 368:317

    Article  Google Scholar 

  41. Gerand B, Nowogrocki G, Figlarz M (1981) J Solid State Chem 38:312

    Article  CAS  Google Scholar 

  42. Ng C, Iwase A, Ng YH, Amal R (2012) J Phys Chem Lett 3:913

    Article  CAS  Google Scholar 

  43. Zheng AM, Liu SB, Deng F (2009) Micropor Mesopor Mater 121:158

    Article  CAS  Google Scholar 

  44. Koiwa I, Kanehara T, Mita J, Iwabuchi T, Osaka T, Ono S, Maeda M (1996) J Appl Phys 35:4946

    Article  CAS  Google Scholar 

  45. Bulgac A (2002) Phys Rev C. arXiv:nucl-th/0108014v5

  46. Segall MD, Lindan PJD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) J Phys Condens Matter 14:2717

    Article  CAS  Google Scholar 

  47. San D (2006) Materials Studio, version 4.0. Accelrys Inc., San Diego

Download references

Acknowledgments

This work was partly supported by the National Natural Science Foundation of China (No. 21003065), Natural Science Foundation of Jiangsu Province (BK2010166), Industry High Technology Foundation of Jiangsu (BE2010144), Scientific Innovation Research of College Graduate in Jangsu Province (CXZZ12 0682), Social Development Foundation of Zhenjiang (SH2011005 and SH2012011), Industry Technology Foundation of Zhenjiang, China (GY2012017), and Research Foundation for Talented Scholars of Jiangsu University (10JDG133).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wei or Jimin Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, W., Xie, J., Lü, X. et al. CTAB-assisted synthesis and characterization of Bi2WO6 photocatalysts grown from WO3·0.33H2O nanoplate precursors. Monatsh Chem 145, 47–59 (2014). https://doi.org/10.1007/s00706-013-0994-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-013-0994-7

Keywords

Navigation