Skip to main content
Log in

Reactivity of terminal phenylpentenes in a ruthenium-catalyzed cross-metathesis reaction: construction of linear bifunctional C-8 alkenes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In the present study the behavior of 1-functionalized 2-phenylpent-4-enes in the presence of ruthenium-based metathesis catalysts was investigated. The experimental observations revealed that the outcome of the reaction depends very much on the combination of olefinic partners used in the reaction; only certain combinations delivered satisfactory amounts of unsymmetrical cross-metathesis products, i.e., bifunctional C-8 alkenes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kricheldorf HR, Nuyken O, Swift G (2005) Handbook of polymer synthesis, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  2. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4442

    Article  CAS  Google Scholar 

  3. Zhao P, Shpasser D, Eisen MS (2012) J Polym Sci Part A Polym Chem 50:523

    Article  CAS  Google Scholar 

  4. Mackenzie K (1964) In: Patai S (ed) The chemistry of alkenes. Wiley, New York

    Google Scholar 

  5. Semmelhack MF (ed) (1991) Comprehensive organic synthesis: additions to and substitutions at C−C π-bonds, vol 4. Pergamon Press, Oxford

    Google Scholar 

  6. Grubbs RH (ed) (2003) Handbook of metathesis, vol 3. Wiley, Weinheim

    Google Scholar 

  7. Hoveyda AH, Zhugralin AR (2007) Nature 450:243

    Article  CAS  Google Scholar 

  8. Astruc D (2005) New J Chem 29:42

    Article  CAS  Google Scholar 

  9. Trnka TM, Grubbs RH (2001) Acc Chem Res 34:18

    Article  CAS  Google Scholar 

  10. Fürstner A (2000) Angew Chem Int Ed 39:3012

    Article  Google Scholar 

  11. Deiters A, Martin SF (2004) Chem Rev 104:2199

    Article  CAS  Google Scholar 

  12. McReynolds MD, Dougherty JM, Hanson PR (2004) Chem Rev 104:2239

    Article  CAS  Google Scholar 

  13. Nicolaou KC, Bulger PG, Sarlah D (2005) Angew Chem Int Ed 44:4490

    Article  CAS  Google Scholar 

  14. Gradillas A, Pérez-Castells J (2006) Angew Chem Int Ed 45:6086

    Article  CAS  Google Scholar 

  15. van Otterlo WAL, De Koning CB (2009) Chem Rev 109:3743

    Article  Google Scholar 

  16. Nolan SP, Clavier H (2010) Chem Soc Rev 39:3305

    Article  CAS  Google Scholar 

  17. Prunet J (2011) Eur J Org Chem 3634

  18. Požgan F, Dixneuf PH (2007) In: İmamoğlu Y, Dragutan V, Karabulut S (eds) Metathesis chemistry: from nanostructure design to synthesis of advanced materials, vol 243. Springer, Dordrecht London, p 195

    Google Scholar 

  19. Schrock RR, Murdzek JS, Bazan GC, Robbins J, DiMare M, O’Regan M (1990) J Am Chem Soc 112:3875

    Article  CAS  Google Scholar 

  20. Fu GC, Nguyen ST, Grubbs RH (1993) J Am Chem Soc 115:9856

    Article  CAS  Google Scholar 

  21. Scholl M, Ding S, Lee CW, Grubbs RH (1999) Org Lett 1:953

    Article  CAS  Google Scholar 

  22. Connon SJ, Blechert S (2003) Angew Chem Int Ed 42:1900

    Article  CAS  Google Scholar 

  23. Netscher T (2006) J Organomet Chem 691:5155

    Article  CAS  Google Scholar 

  24. Prunet J (2005) Curr Top Med Chem 5:1559

    Article  CAS  Google Scholar 

  25. Chattopadhyay SK, Karmakar S, Biswas T, Majumdar KC, Rahaman H, Roy B (2007) Tetrahedron 63:3919

    Article  CAS  Google Scholar 

  26. Bielawski CW, Grubbs RH (2007) Prog Polym Sci 32:1

    Article  CAS  Google Scholar 

  27. Keitz BK, Endo K, Patel PR, Herbert MB, Grubbs RH (2012) J Am Chem Soc 134:693

    Article  CAS  Google Scholar 

  28. Chatterjee AK, Choi T-L, Sanders DP, Grubbs RH (2003) J Am Chem Soc 125:11360

    Article  CAS  Google Scholar 

  29. Malacea R, Fischmeister C, Bruneau C, Dubois J-L, Couturier J-L, Dixneuf PH (2009) Green Chem 11:152

    Article  CAS  Google Scholar 

  30. Miao X, Blokhin A, Pasynskii A, Nefedov S, Osipov SN, Roisnel T, Bruneau C, Dixneuf PH (2010) Organometallics 29:5257

    Article  CAS  Google Scholar 

  31. Miao X, Fischmeister C, Malacea R, Bruneau C, Dixneuf PH (2011) Green Chem 13:2911

    Article  CAS  Google Scholar 

  32. Rybak A, Meier MAR (2007) Green Chem 9:1356

    Article  CAS  Google Scholar 

  33. Behr A, Pérez Gomes J (2011) Beilstein J Org Chem 7:1

    Article  CAS  Google Scholar 

  34. Montero de Espinosa L, Kempe K, Schubert US, Hoogenboom R, Meier MAR (2012), Macromol Rapid Commun. doi:10.1002/marc.201200487

  35. Abbas M, Slugovc C (2011) Tetrahedron Lett 52:2560

    Article  CAS  Google Scholar 

  36. Netscher T (2005) Curr Top Med Chem 5:1579

    Article  CAS  Google Scholar 

  37. Marshall JA, Sabatini JJ (2006) Org Lett 8:3557

    Article  CAS  Google Scholar 

  38. Rahuel J, Rasetti V, Maibaum J, Rüeger H, Göschke R, Cohen N-C, Stutz S, Cumin F, Fuhrer W, Wood JM, Grütter MG (2000) Chem Biol 7:493

    Article  CAS  Google Scholar 

  39. Dominguez B, Dyke A, Hems W, Mathes C, O’Sullivan AC, Sedelmeier G (2008) Process for the synthesis of intermediates of renin inhibitors such as aliskiren. WO 2008/155338 A2, Dec 24, 2008

  40. Hanessian S, Chénard E (2012) Org Lett 14:3222

    Article  CAS  Google Scholar 

  41. Hanessian S, Guesné S, Chénard E (2010) Org Lett 12:1816

    Article  CAS  Google Scholar 

  42. Požgan F, Štefane B, Kiđemet D, Smodiš J, Zupet R (2012) Tetrahedron 68:5081

    Article  Google Scholar 

  43. Duguet N, Slawin AMZ, Smith AD (2009) Org Lett 11:3858

    Article  CAS  Google Scholar 

  44. Schmidt B (2004) Eur J Org Chem 1865

  45. Fürstner A, Langemann K (1997) J Am Chem Soc 119:9130

    Article  Google Scholar 

  46. Arisawa M, Terada Y, Nakagawa M, Nishida A (2002) Angew Chem Int Ed 41:4732

    Article  CAS  Google Scholar 

  47. Tsuji J, Shimizu I, Minami I, Ohashi Y, Sugiura T, Takahashi K (1985) J Org Chem 50:1523

    Article  CAS  Google Scholar 

  48. Yan X–X, Liang C-G, Zhang Y, Hong W, Cao B-X, Dai L-X, Hou X-L (2005) Angew Chem Int Ed 44:6544

    Article  CAS  Google Scholar 

  49. Kim D, Wang L, Caldwell CG, Chen P, Finke PE, Oates B, MacCoss M, Mills SG, Malkowitz L, Gould SL, DeMartino JA, Springer MS, Hazuda D, Miller M, Kessler J, Danzeisen R, Carver G, Carella A, Holmes K, Lineberger J, Schleif WA, Emini EA (2001) Bioorg Med Chem Lett 11:3103

    Article  CAS  Google Scholar 

  50. Baker RK, Kayser F, Bao J, Kotliar A, Parsons WH, Rupprecht KM, Claiborne CF, Liverton N, Claremon DA, Thompson WJ (2007) Benzamide potassium channel inhibitors. EP 1 126 836 B1, February 14, 2007

Download references

Acknowledgments

The Ministry of Higher Education, Science and Technology of the Republic of Slovenia and the Slovenian Research Agency (P1-0230-0103) are gratefully acknowledged for their financial support. This work was performed and financed as a part of the EN → FIST Centre of Excellence. Dr. B. Kralj and Dr. D. Žigon (Center for Mass Spectroscopy, Jožef Stefan Institute, Ljubljana, Slovenia) are gratefully acknowledged for the mass measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Požgan.

Additional information

This work is dedicated to Professor Slovenko Polanc on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Štefane, B., Požgan, F. Reactivity of terminal phenylpentenes in a ruthenium-catalyzed cross-metathesis reaction: construction of linear bifunctional C-8 alkenes. Monatsh Chem 144, 633–640 (2013). https://doi.org/10.1007/s00706-012-0905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0905-3

Keywords

Navigation