Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 2, pp 155–162 | Cite as

Hydrodebromination of 2,4,6-tribromophenol in aqueous solution using Devarda’s alloy

  • Tomáš Weidlich
  • Anna Krejčová
  • Lubomír Prokeš
Original Paper

Abstract

The effectiveness of application of aluminium and its alloys and mixtures with copper was studied for complete hydrodebromination of 2,4,6-tribromophenol to phenol in aqueous NaOH solution at room temperature. Dissolved metals were removed using precipitation and subsequent filtration.

Graphical Abstract

Keywords

Aluminium Al-alloy Metals NMR spectroscopy 

References

  1. 1.
    Howe, P. Dobson, S. Malcolm, HM.: 2,4,6-Tribromophenol and other simple brominated phenols. In: Concise Int. Chem. Assessment Doc. 66, ISSN 1020-6167; World Health Organization, Geneva (2005)Google Scholar
  2. 2.
    Barontini F, Marsanich K, Petarca L, Cozzani V (2004) Ind Eng Chem Res 43:1952CrossRefGoogle Scholar
  3. 3.
    EPA (1998) Organobromine production wastes; identification and listing of hazardous waste; land disposal restrictions; listing of CERCLA hazardous substances, reportable quantities [online]. Environmental Protection Agency, USA. http://www.epa.gov/epaoswer/hazwaste/state/revision/frs/fr165.rtf
  4. 4.
    Wollenberger L, Dinan L, Breitholtz M (2005) Environ Toxicol Chem 24:400CrossRefGoogle Scholar
  5. 5.
    Olsen CM, Meussen-Elholm ETM, Holme JA, Hongslo JK (2002) Toxicol Lett 129:55CrossRefGoogle Scholar
  6. 6.
    Meerts ATM, Zanden JJI, Luijksvan EAC, Leeuwen-Bol I, Marsh G, Jakobsson E, Bergman A, Brouwer A (2000) Toxicol Sci 56:95CrossRefGoogle Scholar
  7. 7.
    Ríos JC, Repetto G, Jos A, del Peso A, Salguero M, Camean A, Repetto M (2003) Toxicol In Vitro 17:635CrossRefGoogle Scholar
  8. 8.
    Hassenklover T, Predehl S, Pilli J, Ledwolorz J, Assmann M, Bickmeyer U (2006) Aquat Toxicol 76:37CrossRefGoogle Scholar
  9. 9.
    Kusvuran E, Samil A, Osman AM, Erbatur O (2005) Appl Catal B: Environmental 58:211CrossRefGoogle Scholar
  10. 10.
    An T, Liu J, Li G, Zhang S, Zhao H, Zeng X, Sheng G, Fu J (2008) Appl Catal A 350:237CrossRefGoogle Scholar
  11. 11.
    Monrroy M, Baeza J, Freer J, Rodríguez J (2007) Bioremediation J 11:195CrossRefGoogle Scholar
  12. 12.
    Contreras D, Oviedo C, Valenzuela R, Freer J, Rojo K, Rodríguez J (2009) J Chil Chem Soc 54:141Google Scholar
  13. 13.
    Alonso F, Beletskaya IP, Yus M (2002) Chem Rev 102:4009CrossRefGoogle Scholar
  14. 14.
    Tashiro M, Fukata G (1977) J Org Chem 42:835CrossRefGoogle Scholar
  15. 15.
    Liu G-B, Zhao H-Y, Thiemann T (2009) J Hazard Mater 169:1150CrossRefGoogle Scholar
  16. 16.
    Choi J-H, Kim Y-H (2009) J Hazard Mater 166:984CrossRefGoogle Scholar
  17. 17.
    Lee C-L, Jou C-JG, Wang HP (2010) Water Environ Res 82:642CrossRefGoogle Scholar
  18. 18.
    Akagah A, Poite JC, Chanon M (1985) Org Prep Proc Int 17:219CrossRefGoogle Scholar
  19. 19.
    Massicot F, Schneider R, Fort Y, Illy-Cherrey S, Tillement O (2000) Tetrahedron 56:4765CrossRefGoogle Scholar
  20. 20.
    Lunn G, Sansone EB (1991) AIHA J 52:252CrossRefGoogle Scholar
  21. 21.
    Liu G-B, Dai L, Gao X, Li M-K, Thiemann T (2006) Green Chem 8:781CrossRefGoogle Scholar
  22. 22.
    Yang B, Deng S, Yu G, Zhang H, Wu J, Zhuo Q (2011) J Hazard Mater 189:76CrossRefGoogle Scholar
  23. 23.
    Liu G-B, Tashiro M, Thiemann T (2009) Tetrahedron 65:2497CrossRefGoogle Scholar
  24. 24.
    Liu G-B, Zhao H-Y, Zhang J, Thiemann T (2009) J Chem Res 6:342CrossRefGoogle Scholar
  25. 25.
    Flemming CA, Trevors JT (1989) Water Air Soil Poll 44:143CrossRefGoogle Scholar
  26. 26.
    Veeken AHM, Rulkens WH (2003) Water Sci Technol 47:9Google Scholar
  27. 27.
    Roetting TS, Cama J, Ayora C, Cortina JL, De Pablo J (2006) Environ Sci Technol 40:6438CrossRefGoogle Scholar
  28. 28.
    Hubble DS, Harper DM (2000) Water Res 34:2598CrossRefGoogle Scholar
  29. 29.
    Fedoseev PN, Vladimirova VM, Osadchii VD (1972) Izv Vyssh Uchebn Zaved. Khim Khim T 15:1885Google Scholar
  30. 30.
    Maniara G, Rajamoorthi K, Rajan S, Stockton GW (1998) Anal Chem 70:4921CrossRefGoogle Scholar
  31. 31.
    Ríos SM, Barquín CM, Nudelman CN (2010) Environ Chem Lett 8:223CrossRefGoogle Scholar
  32. 32.
    Agueera A, Almansa E, Tejedor A, Fenrandez-Alba AR, Malato S, Maldonado MI (2000) Environ Sci Technol 34:1563CrossRefGoogle Scholar
  33. 33.
    Weidlich T, Krejcova A, Prokes L (2010) Monatsh Chem 141:1015CrossRefGoogle Scholar
  34. 34.
    Weidlich T, Prokes L (2011) Cent Eur J Chem 9:590CrossRefGoogle Scholar
  35. 35.
    Marques CA, Selva M, Tundo P (1996) Gazz Chim Ital 126:317Google Scholar
  36. 36.
    Jovanovic GN, Znidarsic-Plazl P, Sakrittichai P, Al-Khaldi K (2005) Ind Eng Chem Res 44:5099CrossRefGoogle Scholar
  37. 37.
    Lien H-L, Zhang W (2002) Chemosphere 49:371CrossRefGoogle Scholar
  38. 38.
    White, CB. Recovery of tin, copper and lead from scrap and metallurgical residues. US Patent 2,128,548, Jul 23, 1937; (1938) Chem Abstr 32:59743Google Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • Tomáš Weidlich
    • 1
  • Anna Krejčová
    • 1
  • Lubomír Prokeš
    • 2
  1. 1.Faculty of Chemical Technology, Institute of Environmental and Chemical EngineeringUniversity of PardubicePardubiceCzech Republic
  2. 2.Department of Chemistry, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations