Monatshefte für Chemie - Chemical Monthly

, Volume 144, Issue 2, pp 255–262

Glucosides of morphine derivatives: synthesis and characterization

  • András Váradi
  • Dóra Lévai
  • Gergő Tóth
  • Péter Horváth
  • Béla Noszál
  • Sándor Hosztafi
Original Paper


Six 3-O- and 6-O-glucosides of morphine and codeine derivatives were synthesized by means of glucosylation with acetobromo-α-d-glucose. O-Glucosylation at C6 was carried out by the Koenigs-Knorr method, whereas the 3-O-glycoside of morphine was synthesized directly upon stirring morphine with acetobromo-α-d-glucose and aqueous sodium hydroxide in acetone. Complete 1H and 13C NMR assignments are presented for each synthesized compound based on one- and two-dimensional homo- and heteronuclear NMR techniques. Circular dichroism, ultraviolet absorbance, and high-resolution mass spectroscopy data ensure identification and structural characterization of the O-glucoside conjugates. The synthesized glucoside conjugates are potential analgesics; the presented spectral and chromatographic data are useful references for various analytical and metabolic studies including samples of biological origin.

Graphical Abstract


Morphine Glucoside NMR spectroscopy Alkaloids High-pressure liquid chromatography 


  1. 1.
    Trescot A, Glaser SE, Hansen H, Benyamin R, Patel S, Manchikanti L (2008) Pain Phys 11:S181Google Scholar
  2. 2.
    Vallejo R, Barkin RL, Wang VC (2011) Pain Phys 14:E343Google Scholar
  3. 3.
    Smith HS (2011) Clin J Pain 27:824CrossRefGoogle Scholar
  4. 4.
    Váradi A, Gergely A, Béni S, Jankovics P, Noszál B, Hosztafi S (2011) Eur J Pharm Sci 42:65CrossRefGoogle Scholar
  5. 5.
    Mori M, Oguri K, Yoshimura H, Shimomura K, Kamata O, Ueki S (1972) Life Sci 11:525CrossRefGoogle Scholar
  6. 6.
    Yoshimura H, Ida S, Oguri K, Tsukamoto H (1973) Biochem Pharmacol 22:1423CrossRefGoogle Scholar
  7. 7.
    Pasternak GW, Bodnar RJ, Clark JA, Inturrisi CE (1987) Life Sci 41:2845CrossRefGoogle Scholar
  8. 8.
    Paul D, Standifer KM, Inturrisi CE, Pasternak GW (1989) J Pharmacol Exp Ther 251:477Google Scholar
  9. 9.
    Chen XY, Zhao LM, Zhong DF (2003) Br J Clin Pharmacol 55:570CrossRefGoogle Scholar
  10. 10.
    Matern H, Matern S (1987) Biochim Biophys Acta. Lipids Lipid Metab 921:1CrossRefGoogle Scholar
  11. 11.
    Paibir SG, Soine WH, Thomas DF, Fisher RA (2004) Eur J Drug Metab Pharmacokinet 29:51CrossRefGoogle Scholar
  12. 12.
    Shipkova M, Armstrong VW, Wieland E, Niedmann PD, Schütz E, Brenner-Weiß G, Voihsel M, Braun F, Oellerich M (1999) Br J Pharmacol 126:1075CrossRefGoogle Scholar
  13. 13.
    Tang BK (1990) Pharmacol Ther 46:53CrossRefGoogle Scholar
  14. 14.
    Tang BK, Kalow W, Grey AA (1978) Res Commun Chem Pathol Pharmacol 21:45Google Scholar
  15. 15.
    Tang BK, Kalow W, Grey AA (1979) Drug Metab Dispos 7:315Google Scholar
  16. 16.
    Tjornelund J, Hansen SH, Cornett C (1989) Xenobiotica 19:891CrossRefGoogle Scholar
  17. 17.
    Biasutto L, Marotta E, Bradaschia A, Fallica M, Mattarei A, Garbisa S, Zoratti M, Paradisi C (2009) Bioorg Med Chem Lett 19:6721CrossRefGoogle Scholar
  18. 18.
    Hirpara KV, Aggarwal P, Mukherjee AJ, Joshi NJ, Burman AC (2009) Anticancer Agent Med Chem 9:138CrossRefGoogle Scholar
  19. 19.
    Zhao X, Tao X, Wei D, Song Q (2006) Eur J Med Chem 41:1352CrossRefGoogle Scholar
  20. 20.
    Casparis P, Kuhni E, Leinzinger E (1949) Pharm Acta Helv 24:145Google Scholar
  21. 21.
    Kováč P, Rice KC (1995) Heterocycles 41:697CrossRefGoogle Scholar
  22. 22.
    Lacy C, Sainsbury M (1995) Tetrahedron Lett 36:3949CrossRefGoogle Scholar
  23. 23.
    Stachulski AV, Jenkins GV (1998) Nat Prod Rep 15:173CrossRefGoogle Scholar
  24. 24.
    Stachulski AV, Scheinmann F, Ferguson JR, Law JL, Lumbard KW, Hopkins P, Patel N, Clarke S, Gloyne A, Joel SP (2003) Bioorg Med Chem Lett 13:1207CrossRefGoogle Scholar
  25. 25.
    Arsequell G, Salvatella M, Valencia G, Fernández-Mayoralas A, Fontanella M, Venturi C, Jiménez-Barbero J, Marrón E, Rodríguez RE (2009) J Med Chem 52:2656CrossRefGoogle Scholar
  26. 26.
    Berrang B, Twine CE, Hennessee GL, Carroll FI (1975) Synth Commun 5:231CrossRefGoogle Scholar
  27. 27.
    Brown RT, Carter NE, Lumbard KW, Scheinmann F (1995) Tetrahedron Lett 36:8661CrossRefGoogle Scholar
  28. 28.
    Yoshimura H, Oguri K, Tsukamoto H (1968) Chem Pharm Bull 16:2114CrossRefGoogle Scholar
  29. 29.
    Mertz AAH (1993) Method for synthesizing glucuronides of 4,5-epoxy morphinanes. PCT Int Appl WO1993005057; March 18, 1993Google Scholar
  30. 30.
    Welsh LH (1954) J Org Chem 19:1409CrossRefGoogle Scholar
  31. 31.
    Bognár R, Lévai A (1973) Acta Chim Acad Sci Hung 77:435Google Scholar
  32. 32.
    Bosch ME, Sánchez AR, Rojas FS, Ojeda CB (2007) J Pharm Biomed Anal 43:799CrossRefGoogle Scholar
  33. 33.
    Barrett DA, Pawula M, Knaggs RD, Shaw PN (1998) Chromatographia 47:667CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2012

Authors and Affiliations

  • András Váradi
    • 1
  • Dóra Lévai
    • 1
  • Gergő Tóth
    • 1
  • Péter Horváth
    • 1
  • Béla Noszál
    • 1
  • Sándor Hosztafi
    • 1
  1. 1.Department of Pharmaceutical ChemistrySemmelweis UniversityBudapestHungary

Personalised recommendations