Skip to main content
Log in

In silico classification and virtual screening of maleimide derivatives using projection to latent structures discriminant analysis (PLS-DA) and hybrid docking

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In silico screening algorithms are frequently included in drug discovery programs because a significant number of drug candidates have been detected through structure and ligand-based algorithms. In the current work 337 maleimide derivatives that are inhibitors and non-inhibitors of GSK-3α/β were successfully investigated by means of a projection to latent structures discriminant analysis and hybrid docking. These models developed with Dragon (M1) and OpenEye (M2) descriptors are statistically robust (training set M1: R 2X  = 0.677, R 2Y  = 0.976, Q 2Y  = 0.970; M2: R 2X  = 0.651, R 2Y  = 0.835, Q 2Y  = 0.830) and suitably predictive according to Golbraikh–Tropsha external validation criteria (test set M1: R 2 = 0.949; M2: R 2 = 0.835). The models appropriately explained the structural differences between active and inactive compounds in terms of graph topology, substitutional pattern, and molecular flexibility, and predicted false negatives in PubChem assay 1650. The model M2 showed 73.88 % correct external prediction against 264 active maleimides downloaded from ChEMBL. An evaluation of the key interactions with GSK-3β binding site residues was simulated by hybrid docking. A new virtual screening methodology involving equation M2 and hybrid docking was applied to 9,042 maleimide derivatives extracted from PubChem. The model M2 predicted 1,327 active compounds that were subsequently docked into the GSK-3β ATP binding site. Finally 648 compounds were established as hits after the exclusion of previously detected active maleimides. The structural diversity of the new compounds is high demonstrating that the scaffold hopping ability of the current approach is noticeable.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fabian MA, Biggs WH, Treiber DK, Atteridge CE, Azimioara MD, Benedetti MG, Carter TA, Ciceri P, Edeen PT, Floyd M, Ford JM, Galvin M, Gerlach JL, Grotzfeld RM, Herrgard S, Insko DE, Insko MA, Lai AG, Lélias JM, Mehta SA, Milanov ZV, Velasco AM, Wodicka LM, Patel HK, Zarrinkar PP, Lockhart DJ (2005) Nat Biotechnol 23:329

    Article  CAS  Google Scholar 

  2. Frame S, Cohen P (2001) Biochem J 356:1

  3. Salcedo-Tello P, Ortiz-Matamoros A, Arias C (2011) Int J Alzheimers Dis 2011:1

    Article  Google Scholar 

  4. Woodgett JR (1990) EMBO J 9:2431

    Google Scholar 

  5. Woodgett JR (1991) Meth Enzymol 200:564

    Article  CAS  Google Scholar 

  6. Hong M, Chen DC, Klein PS, Lee VM (1997) J Biol Chem 272:25326

    Article  CAS  Google Scholar 

  7. Nikolakaki E, Coffer PJ, Hemelsoet R, Woodgett JR, Defize LH (1993) Oncogene 8:833

    CAS  Google Scholar 

  8. Welsh GI, Miller CM, Loughlin AJ, Price NT, Proud CG (1998) FEBS Lett 421:125

    Article  CAS  Google Scholar 

  9. Cross BAE, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Nature 37:785

    Article  Google Scholar 

  10. Jope RS, Yuskaitis CJ, Beurel E (2007) Neurochem Res 32:577

    Article  CAS  Google Scholar 

  11. Ross SE, Erickson RL, Hemati N, MacDougald OA (1999) Mol Cell Biol 19:8433

    CAS  Google Scholar 

  12. Shaw M, Cohen P, Alessi DR (1997) FEBS Lett 416:307

    Article  CAS  Google Scholar 

  13. Balaramana Y, Limayea AR, Leveyb AI, Srinivasana S (2006) Cell Mol Life Sci 63:1226

    Article  Google Scholar 

  14. Huang HC, Klein PS (2006) Curr Drug Targets 7:1389

    CAS  Google Scholar 

  15. Castro A, Encinas A, Gil C, Bräse S, Porcal W, Pérez C, Moreno FJ, Martinez A (2008) Bioorg Med Chem 16:495

    Article  CAS  Google Scholar 

  16. Smith DG, Buffet M, Fenwick AE, Haigh D, Ife R, Saunders M, Slingsby BP, Stacey R, Ward RW (2001) Bioorg Med Chem Lett 11:635

    Article  CAS  Google Scholar 

  17. Coghlan MP, Culbert AA, Cross DA, Corcoran SL, Yates JW, Pearce NJ, Rausch OL, Murphy GJ, Carter PS, Roxbee Cox L, Mills D, Brown MJ, Haigh D, Ward RW, Smith DG, Murray KJ, Reith AD, Holder JC (2000) Chem Biol 7:793

    Article  CAS  Google Scholar 

  18. Cross DAE, Cubert AA, Chalmers KA, Facci L, Skaper SD, Reith AD (2001) J Neurochem 77:94

    Article  CAS  Google Scholar 

  19. Culbert AA, Brown MJ, Frame S, Hagen T, Cross DA, Bax B, Reith AD (2001) FEBS Lett 507:288

    Article  CAS  Google Scholar 

  20. Kunick C, Lauenroth K, Wieking K, Xie X, Schultz C, Gussio R, Zaharevitz D, Leost M, Meijer L, Weber A, Jorgensen FS, Lemcke T (2004) J Med Chem 47:22

    Article  CAS  Google Scholar 

  21. Sivaprakasam P, Xie A, Doerksen RJ (2006) Bioorg Med Chem 14:8210

    Article  CAS  Google Scholar 

  22. Katritzky AR, Pacureanu LM, Dobchev DA, Fara DC, Duchowicz PR, Karelson M (2006) Bioorg Med Chem 14:4987

    Google Scholar 

  23. Patel DS, Bharatam PV (2008) Eur J Med Chem 43:949

    Article  CAS  Google Scholar 

  24. Tropsha A, Golbraikh A (2007) Curr Pharm Des 13:3494

    Google Scholar 

  25. Hsieh JH, Wang XS, Teotico D, Golbraikh A, Tropsha A (2008) J Comput Aided Mol Des 22:593

    Article  CAS  Google Scholar 

  26. Golbraikh A, Bernard P, Chrétien JR (2000) Eur J Med Chem 35:123

    Article  CAS  Google Scholar 

  27. Golbraikh A, Tropsha A (2002) J Mol Graphics Model 20:269

    Article  CAS  Google Scholar 

  28. Golbraikh A, Tropsha A (2002) Comp Aid Mol Des 16:357

    Article  CAS  Google Scholar 

  29. Bertrand JA, Thieffine S, Vulpetti A, Cristiani C, Valsasina B, Knapp S, Kalisz HM, Flocco M (2003) J Mol Biol 333:393

    Article  CAS  Google Scholar 

  30. Moran PAP (1950) Biometrika 37:17

    CAS  Google Scholar 

  31. Todeschini R, Consoni V (2000) In: Mannhold R, Kubinyi H, Timmerman H (eds) Handbook of molecular descriptors. Wiley-VCH, Weinheim, pp 17–19, 366, 482, 513

  32. Consonni V, Todeschini R, Pava R (2002) J Chem Inf Comput Sci 42:682

    Article  CAS  Google Scholar 

  33. Gasteiger J, Sadowski J, Schuur J, Selzer P, Steinhauer L, Steinhauer V (1996) J Chem Inf Comput Sci 36:1030

    Article  CAS  Google Scholar 

  34. Todeschini R, Gramatica P (1997) Quant Struct-Act Relat 16:113

    Article  CAS  Google Scholar 

  35. Schuur JH, Selzer P, Gasteiger J (1996) J Chem Inf Comput Sci 36:334

    Article  CAS  Google Scholar 

  36. McGann M (2011) J Chem Inf Model 51:578

    Article  CAS  Google Scholar 

  37. McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Biopolymers 68:76

    Article  CAS  Google Scholar 

  38. Dessalew N, Bharatam PV (2007) Eur J Med Chem 42:1014

    Article  CAS  Google Scholar 

  39. Prasanna S, Daga PR, Xie A, Doerksen RJ (2009) J Comput Aided Mol Des 23:113

    Article  CAS  Google Scholar 

  40. Kim KH, Gaisina I, Gallier F, Holzle D, Blond SY, Mesecar A, Kozikowski AP (2009) J Mol Model 15:1463

    Article  CAS  Google Scholar 

  41. Vadivelan S, Sinha BN, Tajne S, Jagarlapudi SARP (2009) Eur J Med Chem 44:2361

    Article  CAS  Google Scholar 

  42. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) Nucl Acids Res 40:D1100

    Article  CAS  Google Scholar 

  43. Oprea TI, Tropsha A, Faulon JL, Rintoul MD (2007) Nat Chem Biol 3:447

    Article  CAS  Google Scholar 

  44. Fang J, Huang D, Zhao W, Ge H, Luo H-B, Xu J (2011) J Chem Inf Model 51:1431

    Article  CAS  Google Scholar 

  45. Jackson JE (1991) A user’s guide to principal components. Wiley, New York

  46. Eriksson L, Jaworska J, Worth AP, Cronin MTD, McDowell RM, Gramatica P (2003) Environ Health Perspect 111:1361

    Article  CAS  Google Scholar 

  47. ChemAxon (2008) Instant JChem, version 2.4; http://www.chemaxon.com. Accessed 6 Aug 2011

  48. Zhang HC, Ye H, Conway BR, Derian CK, Addo MF, Kuo GH, Hecker LR, Croll DR, Li J, Westover L, Xu JZ, Look R, Demarest KT, Andrade-Gordon P, Damiano BP, Maryanoff BE (2004) Bioorg Med Chem Lett 14:3245

    Article  CAS  Google Scholar 

  49. Gaisina IN, Gallier F, Kim KH, Ougolkov AV, Guo S, Holzle D, Luchini DN, Kurome T, Blond SY, Billadeau D, Kozokowski AP (2009) J Med Chem 52:1853

    Article  CAS  Google Scholar 

  50. Ye Q, Guiqing Xu, Lv Dan, Cheng Zhe, Li Jia, Yongzhou Hu (2009) Bioorg Med Chem 17:4302

    Article  CAS  Google Scholar 

  51. Engler TA, Malhotra S, Burkholder TP, Henry JR, Mendel D, Porter WJ, Furness K, Diefenbacher C, Marquart A, Reel JK, Li Y, Clayton J, Cunningham B, McLean J, O’Toole JC, Brozinick J, Hawkins E, Misener E, Briere D, Brier RA, Wagner JR, Campbell RM, Anderson BD, Vaughn R, Bennett DB, Meier TI, Cook JA (2005) Bioorg Med Chem Lett 15:899

    Article  CAS  Google Scholar 

  52. Ali A, Hoeflich KP, Woodgett JR (2001) Chem Rev 101:2527

    Article  CAS  Google Scholar 

  53. OpenEye Scientific Software (2010) FILTER, version 2.1.1. OpenEye Scientific Software, Santa Fe; www.eyesopen.com. Accessed 6 Sep 2011

  54. Guha RM, Howard T, Hutchison GR, Murray-Rust P, Rzepa H, Steinbeck C, Wegner JK, Willighagen E (2006) J Chem Inf Model 46:991

    Article  CAS  Google Scholar 

  55. Tropsha A (2010) Mol Inf 29:476

    Article  CAS  Google Scholar 

  56. Hypercube (2005) HYPERCHEM for Windows, version 7.52. Hypercube, Gainesville

  57. Leonard JT, Roy K (2006) QSAR Comb Sci 25:235

    Article  CAS  Google Scholar 

  58. R Development Core Team (2010) R: a language and environment for statistical computing, version 2.11.1. R Foundation for Statistical Computing, Vienna; http://www.R-project.org. Accessed 6 Feb 2011

  59. Wold S (1976) Pattern Recognit 8:127

    Article  Google Scholar 

  60. Cramer RD (1993) Persp Drug Discov Design 1:269

    Article  CAS  Google Scholar 

  61. Umetrics (2001) SIMCA P, version 9.0. Umetrics AB, Umea; http://www.umetrics.com/. Accessed 6 Oct 2011

  62. Golbraikh A, Shen M, Xiao Z, Lee KH, Tropsha A (2003) J Comput Aided Mol Des 17:241

    Article  CAS  Google Scholar 

  63. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis: principles and applications. Umetrics AB, Umeå, pp 92–97, 489–491

  64. OpenEye Scientific Software (2010) OMEGA, version 2.4.3. OpenEye Scientific Software, Santa Fe; www.eyesopen.com. Accessed 6 Jul 2011

  65. Schulz-Gasch T, Stahl M (2003) J Mol Model 9:47

    CAS  Google Scholar 

  66. OpenEye Scientific Software (2009) FRED and Fred Receptor module, version 2.2.5. OpenEye Scientific Software, Santa Fe; www.eyesopen.com. Accessed 6 Aug 2011

  67. Kruger DM, Evers A (2010) Chem Med Chem 5:148

    Google Scholar 

Download references

Acknowledgments

We thank OpenEye for providing an academic license, Dr. Eriksson for the SIMCA-P 9.0 package, Dr. Mircea Mracec for the access to Hyperchem 7.52, Chemaxon for the free license for Instant JChem, and SureChem for the free trial license. This project was financially supported by the Project No. 1.2 of the Institute of Chemistry of Romanian Academy, Timisoara.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luminita Crisan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1990 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pacureanu, L., Crisan, L., Bora, A. et al. In silico classification and virtual screening of maleimide derivatives using projection to latent structures discriminant analysis (PLS-DA) and hybrid docking. Monatsh Chem 143, 1559–1573 (2012). https://doi.org/10.1007/s00706-012-0816-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0816-3

Keywords

Navigation