Skip to main content
Log in

Correlation of surface roughness and surface energy of silicon-based materials with their priming reactivity

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

In this work, the effect of surface roughness and cleaning procedures on reactivity during priming with hexamethyldisilazane is described for four silicon substrates frequently used in semiconductor technology, namely thermally grown SiO2, argon implanted tetraorthosilicate SiO2, polysilicon, and amorphous silicon. Surface energy and roughness were determined by static contact angle measurements and atomic force microscopy. The surface roughness of the silicon substrates increased in the order: thermally grown SiO2, argon implanted tetraorthosilicate SiO2, polysilicon, and amorphous silicon. It was found not to be substantially affected by standard cleaning procedures. The surface energy of all silicon samples decreased with increasing hexamethyldisilazane vapor exposure at 90 °C, and the extent of the decrease corresponded to the surface roughness. Furthermore, a promoting effect on the silylation reaction by an argon implantation process was determined. A correlation between the surface morphology of different silicon materials and reactivity in the silylation reaction with hexamethyldisilazane could be established.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schneiderman R (2011) IEEE Signal Process Mag 28:8

    Article  Google Scholar 

  2. Franssila S (2004) Introduction to microfabrication. Wiley, Chichester

    Google Scholar 

  3. Li N, Ho C-M (2008) Lab Chip 8:2105

    Article  CAS  Google Scholar 

  4. Sackmann E, Tanaka M (2000) Trends Biotechnol 18:58

    Article  CAS  Google Scholar 

  5. Rehfeldt F, Tanaka M, Pagnoni L, Jordan R (2002) Langmuir 18:4908

    Article  CAS  Google Scholar 

  6. Schultz J, Nardin M (2003) Theories and mechanisms of adhesion. In: Pizzi A, Mittal KL (eds) Handbook of adhesive technology, 2nd edn. Marcel Dekker Inc, New York

    Google Scholar 

  7. Blossey R (2003) Nat Mater 2:301

    Article  CAS  Google Scholar 

  8. Khanna VK (2011) J Phys D Appl Phys 44:034004

    Article  Google Scholar 

  9. Petersson L, Meier P, Kornmann X, Hillborg H (2011) J Phys D Appl Phys 44:034011

    Article  Google Scholar 

  10. Lampin M, Warocquier-Clerout R, Legris C, Degrange M, Sigot-Luizard MF (1997) J Biomed Mater Res Part A 36:99

    Article  CAS  Google Scholar 

  11. Kern W (2008) Evolution of wafer cleaning science and technology. In: Kern W, Reinhardt KA (eds) Handbook of semiconductor wafer cleaning technology, 2nd edn. William Andrew Inc, Norwich, p 47

    Google Scholar 

  12. Kern W, Puotinen DA (1970) RCA Rev 31:187

    CAS  Google Scholar 

  13. Sato M, Kawai A (2006) J Photopolym Sci Tec 19:601

    Article  CAS  Google Scholar 

  14. Ponjeé JJ, Mariott VB, Michielsen MCBA, Touwslager FJ, van Velzen PNT, van der Wel H (1990) J Vac Sci Technol B 8:463

    Article  Google Scholar 

  15. Bauer J, Drescher G, Illig M (1996) J Vac Sci Technol B 14:2485

    Article  CAS  Google Scholar 

  16. Larsson MP, Ahmad MM (2006) J Micromech Microeng 16:161

    Article  Google Scholar 

  17. Hertl W, Hair ML (1971) J Phys Chem 75:2181

    Article  Google Scholar 

  18. Gun’ko VM, Vedamuthu MS, Henderson GL, Blitz JP (2000) J Colloid Interface Sci 228:157

    Article  Google Scholar 

  19. Hwang K-Y, Park C-S, Kim J-H, Suh K-Y, Cho E-C, Huh N (2010) J Micromech Microeng 20:117001

    Article  Google Scholar 

  20. Helbert JN, Saha NC (1984) Importance of the interface condition upon photoresist image adhesion in microelectronic device fabrication. In: Bowden MJ, Turner SR (eds) Polymers for high technology electronics and photonics. ACS Symposium Series, Washington DC

    Google Scholar 

  21. Hair ML, Hertl W (1973) J Phys Chem 75:1965

    Article  Google Scholar 

  22. Samitsu Y (1993) Nanotechnology 4:236

    Article  CAS  Google Scholar 

  23. Busscher HJ, van Pelt AWJ, de Boer P, de Jong HP, Arends J (1984) Colloids Surf 9:319

    Article  CAS  Google Scholar 

  24. Vesel A, Junkar I, Cvelbar U, Kovac J, Mozetic M (2008) Surf Interface Anal 40:1444

    Article  CAS  Google Scholar 

  25. Chasse M, Ross GG (2002) J Appl Phys 92:5872

    Article  CAS  Google Scholar 

  26. Feng B, Weng J, Yang BC, Qu SX, Zhang XD (2003) Biomaterials 24:4663

    Article  CAS  Google Scholar 

  27. Ström G, Frederiksson M, Stenius P (1986) J Coll Interface Sci 119:352

    Article  Google Scholar 

  28. Leenaars AFM, Huethorst JAM, van Oekel JJ (1990) Langmuir 6:1701

    Article  CAS  Google Scholar 

  29. Widmann D, Mader H, Friedrich H (2000) Technology of integrated circuits. Springer, Heidelberg, p 247

    Google Scholar 

  30. Friedbacher G, Fuchs H (2003) Angew Chem 115:5804

    Article  Google Scholar 

  31. Lee JP, Jang YJ, Sung MM (2003) Adv Funct Mater 13:873

    Article  CAS  Google Scholar 

  32. Yang SY, Shin K, Park CE (2005) Adv Funct Mater 15:1806

    Article  CAS  Google Scholar 

  33. Cho K, Kim D, Yoon S (2003) Macromolecules 36:7652

    Article  CAS  Google Scholar 

  34. Owens DK, Wendt RC (1969) J Appl Polym Sci 13:1741

    Article  CAS  Google Scholar 

  35. Rabel W (1971) Farbe Lack 77:997

    CAS  Google Scholar 

  36. Kaelble DH (1970) J Adhes 2:66

    Article  CAS  Google Scholar 

  37. Lau WS (1999) Infrared characterization for microelectronics. World Scientific, Singapore, p 25

    Book  Google Scholar 

  38. Barr TL, Seal S (1995) J Vac Sci Technol A 13:1239

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was performed at the Institute for Chemistry and Technology of Materials (ICTM) at the Graz University of Technology and at Infineon Technologies Austria AG Villach with funding and contributions from the Polymer Competence Center Leoben GmbH (PCCL, Austria) within the framework of the COMET-program of the Austrian Ministry of Traffic, Innovation and the Ministry of Economy, Family and Youth. PCCL is funded by the Austrian Government and the State Governments of Styria and Upper Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Wiesbrock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 377 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodner, T., Behrendt, A., Prax, E. et al. Correlation of surface roughness and surface energy of silicon-based materials with their priming reactivity. Monatsh Chem 143, 717–722 (2012). https://doi.org/10.1007/s00706-012-0730-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0730-8

Keywords

Navigation