Skip to main content
Log in

An improved catalytic method for the synthesis of 3,3-di(indolyl)oxindoles using Amberlyst 15 as a heterogeneous and reusable catalyst in water

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Amberlyst 15 efficiently catalyzed the electrophilic substitution reaction of indoles with isatin derivatives to afford 3,3-di(indolyl)oxindoles in water. An important feature of this protocol is the reaction of 3-methyl-1H-indole with isatins to give the corresponding 3,3-diaryloxindole derivatives in high yields. The catalyst exhibited remarkable reusable activity.

Graphical Abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. Sundberg RJ (1996) The chemistry of indoles. Academic Press, New York

    Google Scholar 

  2. Abedman J, Khalif A, Tilt R, Martin SC, Suckling JJ, Urwin R, Waighe D, Fishleigh RV, Young SC (2000) J Chem Res (S) 264

  3. Goehring RR, Sachdeva YP, Pisipati JS, Sleevi MC, Wolfe JF (1985) J Am Chem Soc 107:435 and references therein

  4. Galliford CV, Scheidt KA (2007) Angew Chem 119:8902

    Article  Google Scholar 

  5. Marti C, Carreira EM (2003) Eur J Org Chem 63:2209

    Article  Google Scholar 

  6. Lin H, Danishefsky SJ (2003) Angew Chem 115:38

    Article  Google Scholar 

  7. Jensen BS (2002) CNS Drug Rev 8:353

    Article  CAS  Google Scholar 

  8. Pope FD (1984) J Heterocycl Chem 21:1641

    Article  Google Scholar 

  9. Pajouhesh H, Parsons R, Pope FD (1983) J Pharm Sci 72:318

    Article  CAS  Google Scholar 

  10. Joshi KC, Pathak VN, Jain SK (1980) Pharmazie 35:677

    CAS  Google Scholar 

  11. Bergman J, Eklund N (1980) Tetrahedron 36:1445

    Article  CAS  Google Scholar 

  12. Azizian J, Mohammadi AA, Karimi N, Mohammadizadeh MR, Karimi AR (2006) Catal Commun 7:752

    Article  CAS  Google Scholar 

  13. Wang SY, Ji SJ (2006) Tetrahedron 62:1527

    Article  CAS  Google Scholar 

  14. Yadav JS, Reddy BVS, Gayathri KU, Meraj S, Prasad AR (2006) Synthesis 4121

  15. Paira P, Hazra A, Kumar S, Paira R, Sahu KB, Naskar S, Saha P, Mondal S, Maity A, Banerjee S, Mondal NB (2009) Bioorg Med Chem Lett 19:4786

    Article  CAS  Google Scholar 

  16. Rad-Moghadam K, Sharifi-Kiasaraie M, Taheri-Amlashi H (2010) Tetrahedron 66:2316

    Article  CAS  Google Scholar 

  17. Baeyer A, Lazarus MJ (1885) Chem Ber 18:2637

    Article  Google Scholar 

  18. Zhou F, Liu YL, Zhou J (2010) Adv Synth Catal 352:1381

    Article  CAS  Google Scholar 

  19. Klumpp DA, Yeung K, Prakash GKS, Olah GA (1998) J Org Chem 63:4481

    Article  CAS  Google Scholar 

  20. Mai CK, Sammons MF, Sammakia T (2010) Org Lett 12:2306

    Article  CAS  Google Scholar 

  21. Hanhan NV, Sahin AH, Chang TW, Fettinger JC, Franz AK (2010) Angew Chem 122:756

    Article  Google Scholar 

  22. Kamal A, Srikanth YVV, Khan MNA, Shaik TB, Ashraf MD (2010) Bioorg Med Chem Lett 20:5229

    Article  CAS  Google Scholar 

  23. Nicolaou KC, Bella M, Chen DYK, Huang X, Ling T, Snyder SA (2002) Angew Chem Int Ed 41:3495

    Article  CAS  Google Scholar 

  24. Das B, Venkateswarlu K, Holla H, Krishnaiah M (2006) J Mol Catal A: chem 253:107

    Article  CAS  Google Scholar 

  25. Shaabani A, Rahmati A, Badri Z (2008) Catal Commun 9:13

    Article  CAS  Google Scholar 

  26. Sheldon RA, Bekkum H (2001) Fine chemicals through heterogeneous catalysis. Wily-VCH, Weinheim

    Google Scholar 

  27. Vijender M, Kishore P, Narender P, Satyanarayana B (2007) J Mol Catal A: chem 266:290

    Article  CAS  Google Scholar 

  28. Das B, Damodar K, Chowdhury N (2007) J Mol Catal A: chem 269:81

    Article  CAS  Google Scholar 

  29. Das B, Majhi A, Banerjee J, Chowdhury N (2006) J Mol Catal A: chem 260:32

    Article  CAS  Google Scholar 

  30. Tajbakhsh M, Heydari A, Khalilzadeh MA, Lakouraj MM, Zamenian B, Khaksar S (2007) Synlett 2347

  31. Tajbakhsh M, Heydari A, Alinezhad H, Ghanei M, Khaksar S (2008) Synthesis 352

  32. Sheldon RA (2005) Green Chem 7:267

    Article  CAS  Google Scholar 

  33. Li CJ, Chen L (2006) Chem Soc Rev 35:68

    Article  Google Scholar 

  34. Grieco PA (1998) Organic synthesis in water. Blackie Academic and Professional, London

    Book  Google Scholar 

  35. Li CJ, Chan TH (1997) Organic reactions in aqueous media. Wiley, New York

    Google Scholar 

  36. Alimohammadi K, Sarrafi Y, Tajbakhsh M (2008) Monatsh Chem 139:1037

    Article  CAS  Google Scholar 

  37. Alimohammadi K, Sarrafi Y, Tajbakhsh M, Yeganegi S, Hamzehloueian M (2011) Tetrahedron 67:1589

    Article  CAS  Google Scholar 

  38. Sarrafi Y, Hamzehloueian M, Alimohammadi K, Khavasi HR (2010) Tetrahedron Lett 51:4734

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the Research Councils of Mazandaran University for their partial financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Sarrafi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarrafi, Y., Alimohammadi, K., Sadatshahabi, M. et al. An improved catalytic method for the synthesis of 3,3-di(indolyl)oxindoles using Amberlyst 15 as a heterogeneous and reusable catalyst in water. Monatsh Chem 143, 1519–1522 (2012). https://doi.org/10.1007/s00706-012-0723-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0723-7

Keywords

Navigation