Skip to main content
Log in

Density functional theory study of the magnetic coupling interaction in a series of binuclear oxalate complexes

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Magnetic couplings in oxalate-bridged binuclear complexes, namely five isomers of [(VO)2(ox)(SCN)6]4−, trans-(equatorial, equatorial), cis-(equatorial, equatorial), trans-(axial, axial), cis-(axial, axial), and (axial, equatorial), as well as [Cr2(ox)(SCN)8]4−, [Fe2(ox)(SCN)8]4−, [CrFe(ox)(SCN)8]4−, [Fe2(ox)5]4−, [Cr2(ox)5]4−, [Ni2(ox)5]6−, and [Cu2(ox)(C12H8N2)2]2+, were calculated with the broken symmetry approach. Predominant antiferromagnetic coupling is found in almost all investigated complexes, except in [CrFe(ox)(SCN)8]4−. The best agreement with experimental values for the exchange coupling constants were obtained at the B3LYP level of theory, whereas the non-hybrid functionals gave the best trend for the investigated vanadium complexes. The linear relationship between coupling constant and (ε 2  − ε 1)2 as well as linear dependence of J and the square of overlap integral of magnetic orbitals was estimated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rajaraman G, Totti F, Bencini A, Caneschi A, Sessoli R, Gatteschi D (2009) Dalton Trans 45:3153

    Article  Google Scholar 

  2. Bencini A, Casarin M, Forrer D, Franco L, Garau F, Masciocchi N, Pandolfo L, Pettinari C, Ruzzi M, Vittadini A (2009) Inorg Chem 48:4044

    Article  CAS  Google Scholar 

  3. Bencini A, Totti F (2009) J Chem Theory Comput 5:44

    Article  Google Scholar 

  4. Bencini A, Totti F (2005) Int J Quantum Chem 101:819

    Article  CAS  Google Scholar 

  5. Duboc C, Ganyushin D, Sivalingam K, Collomb MN, Neese F (2010) J Phys Chem 114:10750

    Article  CAS  Google Scholar 

  6. Pantazis DA, Kremwald V, Orio M, Neese F (2010) Dalton Trans 39:4959

    Article  CAS  Google Scholar 

  7. Orio M, Pantazis DA, Petrenko T, Neese F (2009) Inorg Chem 48:7251

    Article  CAS  Google Scholar 

  8. Bencini A, Daul CA, Fantucci P, Barone V (1997) Inorg Chem 36:5022

    Article  CAS  Google Scholar 

  9. Barone V, Bencini A, Ciofini I, Daul CA, Totti F (1998) J Am Chem Soc 120:8357

    Article  CAS  Google Scholar 

  10. Atanasov M, Comba P, Daul CA (2006) J Phys Chem 110:13332

    Article  CAS  Google Scholar 

  11. Noodleman L, Peng CY, Case DA, Mouesca JM (1995) Coord Chem Rev 144:199

    Article  CAS  Google Scholar 

  12. Noodleman L, Case DA, Aizman A (1988) J Am Chem Soc 110:1001

    Article  CAS  Google Scholar 

  13. Noodleman L, Norman JG, Osborne JH, Aizman A, Case DA (1985) J Am Chem Soc 107:3418

    Article  CAS  Google Scholar 

  14. Noodleman L (1981) J Chem Phys 74:5737

    Article  CAS  Google Scholar 

  15. Grubišić S, Gruden-Pavlović M, Radanović D, Perić M, Niketić SR (2009) J Mol Struc 919:54

    Article  Google Scholar 

  16. Perić M, Zlatar M, Niketić SR, Gruden-Pavlović M, Grubišić S (2011) Monatsh Chem 142:585

    Article  Google Scholar 

  17. Soda T, Kitagawa Y, Onishi T, Takano Y, Shigeta Y, Nagao H, Yoshika Y, Yamaguchi K (2000) Chem Phys Lett 319:223

    Article  CAS  Google Scholar 

  18. Yamaguchi K, Takahara Y, Fueno T (1986) App Quantum Chem 155

  19. Castillo O, Luque A, Román P, Lioret F, Julve M (2001) Inorg Chem 40:5526

    Article  CAS  Google Scholar 

  20. Zhao X, Liang D, Liu S, Sun C, Cao R, Gao C, Ren Y, Su Z (2008) Inorg Chem 47:7133

    Article  CAS  Google Scholar 

  21. Ōkawa H, Shigematsu A, Sadakiyo M, Miyagawa T, Yoneda K, Ohba M, Kitagawa H (2009) J Am Chem Soc 131:13516

    Article  Google Scholar 

  22. Muga I, Gutiérrez-Zorrilla JM, Vitoria P, Luque A, Insausti M, Román P, Lloret F (2000) Eur J Inorg Chem 30:2541

    Article  Google Scholar 

  23. Decurtins S, Schmalle HW, Oswald HR, Linden A, Ensling J, Gutlich P, Hauser A (1994) Inorg Chim Acta 65:216

    Google Scholar 

  24. Decurtins S, Schmalle HW, Schneuwly P, Oswald HR (1993) Inorg Chem 32:1888

    Article  CAS  Google Scholar 

  25. Plass W (1997) Inorg Chem 36:10

    Article  Google Scholar 

  26. Plass W (1998) Inorg Chem 37:3167

    Article  Google Scholar 

  27. Triki S, Bérézovsky F, Pala JS, Garland MT (2000) Inorg Chim Acta 308:31

    Article  CAS  Google Scholar 

  28. Triki S, Bérézovsky F, Pala JS, Gómez-Garcĺa CJ, Coronado E, Costuas K, Calet JF (2001) Inorg Chem 40:5127

    Article  CAS  Google Scholar 

  29. Zhang XD, Zhao Z, Sun JY, Ma YC, Zhu ML (2005) Acta Cryst 61:2643

    Google Scholar 

  30. Triki S, Bérézovsky F, Pala JS, Coronado E, Gómez-Garcĺa CJ, Clemente JM, Riou A, Molinié P (2000) Inorg Chem 39:3771

    Article  CAS  Google Scholar 

  31. Armentano D, De Munno G, Faus J, Lloret F, Julve M (2001) Inorg Chem 40:655

    Article  CAS  Google Scholar 

  32. Cramer CJ, Truhlar DG (2009) Phys Chem Chem Phys 11:10757

    Article  CAS  Google Scholar 

  33. Hay PJ, Thibeault JC, Hoffmann R (1975) J Am Chem Soc 97:4884

    Article  CAS  Google Scholar 

  34. Kahn O (1993) Molecular magnetism. VCH, New York

    Google Scholar 

  35. Becke AD (1988) Phys Rev 38:3098

    Article  CAS  Google Scholar 

  36. Perdew JP (1986) Phys Rev 33:8822

    Article  Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev 37:785

    Article  CAS  Google Scholar 

  38. Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Sing DJ, Fiolhais C (1992) Phys Rev 46:6671

    Article  CAS  Google Scholar 

  39. Vosko S, Wilk L, Nusair M (1980) Can J Phys 58:1200

    Article  CAS  Google Scholar 

  40. Schaefer A, Horn H, Ahlrichs R (1992) J Chem Phys 97:2571

    Article  CAS  Google Scholar 

  41. Schaefer A, Huber C, Ahlrichs R (1994) J Chem Phys 100:5829

    Article  CAS  Google Scholar 

  42. Becke AD (1986) J Chem Phys 84:4524

    Article  CAS  Google Scholar 

  43. Perdew JP, Yue W (1986) Phys Rev 33:8800

  44. Perdew JP (1986) Phys Rev 33:8822

  45. Swart M, Ehlers AW, Lammertsma K (2004) Mol Phys 102:2467

    Article  CAS  Google Scholar 

  46. Neese F (2009) Orca—an ab initio, DFT, and semiempirical electronic structure package, Version 2.8, Revision 15. Max Planck-Institut für Bioanorganische Chemie, Mühlheim

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Serbian Ministry of Education and Science through the Grant No. 172035 and is part of COST CMST Action CM1002 (“COnvergent Distributed Environment for Computational Spectroscopy (CODECS)”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonja Grubišić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perić, M., Zlatar, M., Gruden-Pavlović, M. et al. Density functional theory study of the magnetic coupling interaction in a series of binuclear oxalate complexes. Monatsh Chem 143, 569–577 (2012). https://doi.org/10.1007/s00706-011-0705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0705-1

Keywords

Navigation