Skip to main content
Log in

Molecular insights into the binding affinity and specificity of the hemagglutinin cleavage loop from four highly pathogenic H5N1 isolates towards the proprotein convertase furin

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The furin (FR) complex with each of four different sequences of hemagglutinin from the highly pathogenic H5N1 strains (HPH5), which were identified during the 2004–2010 influenza outbreaks in Thailand, were evaluated by molecular dynamics simulations, so as to compare the specificity and recognition of the enzyme–substrate binding. Relative to the conventional HPH5 inserted (H5Sq1, RERRRKKR), the S5-R or S6-R arginine residue is replaced by the smaller lysine in the H5Sq2 (RERKRKKR) and H5Sq3 (REKRRKKR) strains, respectively, whereas the S3-K lysine residue is deleted in H5Sq4 (RERRR_KR). The molecular dynamics results of the intermolecular interactions, in terms of hydrogen bonds and per-residue decomposition energy, between the substrate and furin revealed that the deletion of the positively charged amino acid at the S3 position in H5Sq4 leads to a notably weaker binding and specificity with the furin active site compared with that of FR–H5Sq1. A slight change in the substrate binding was found in the FR–H5Sq2 and FR–H5Sq3 complexes as a result of the replacement of the arginine with the shorter side-chained lysine (same positive charge). Altogether, the predicted binding free energy of the enzyme–substrate complexes was found to be in the following order: FR–H5Sq1 < FR–H5Sq2 ~ FR–H5Sq3 ≪ FR–H5Sq4.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Steinhauer DA (1999) Virology 258:1

    Article  CAS  Google Scholar 

  2. Horimoto T, Kawaoka Y (1995) Virology 210:466

    Article  CAS  Google Scholar 

  3. Horimoto T, Kawaoka Y (2005) Nat Rev Microbiol 3:591

    Article  CAS  Google Scholar 

  4. Stieneke-Gröber A, Vey M, Hangliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W (1992) EMBO J 11:2407

    Google Scholar 

  5. Basak A, Zhong M, Munzer JS, Tien MC, Seidah NG (2001) Biochem J 353:537

    Article  CAS  Google Scholar 

  6. Cross KJ, Burleigh LM, Steinhauer D (2001) Expert Rev Mol Med 6:1

    Google Scholar 

  7. Chutinimitkul S, Songserm T, Amonsin A, Payungporn S, Suwannakarn K, Damrongwatanapokin S, Chaisingh A, Nuansrichay B, Chieochansin T, Theamboonlers A, Poovorawan Y (2007) Emerg Infect Dis 13:506

    Article  CAS  Google Scholar 

  8. Nunthaboot N, Rungrotmongkol T, Malaisree M, Decha P, Kaiyawet N, Intharathep P, Sompornpisut P, Poovorawan Y, Hannongbua S (2010) Monatsh Chem 141:801

    Article  CAS  Google Scholar 

  9. Nunthaboot N, Rungrotmongkol T, Malaisree M, Kaiyawet N, Decha P, Sompornpisut P, Poovorawan Y, Hannongbua S (2010) J Chem Inf Model 50:1410

    Article  CAS  Google Scholar 

  10. Chen J, Lee KL, Steinhauer DA, Stevens J, Skehel JJ, Wiley DC (1998) Cell 95:409

    Article  CAS  Google Scholar 

  11. Holyoak T, Kettner CA, Petsko GA, Fuller RS, Ringe D (2004) Biochemistry 43:2412

    Article  CAS  Google Scholar 

  12. Decha P, Rungrotmongkol T, Intharathep P, Malaisree M, Aruksakunwong O, Laohpongspaisan C, Parasuk V, Sompornpisut P, Pianwanit S, Kokpol S, Hannongbua S (2008) Biophys J 95:128

    Article  CAS  Google Scholar 

  13. Hosako M, Nagahama M, Kim WS, Watanabe T, Hatsuzawa K, Ikemizu J, Murakami K, Nakayama K (1991) J Biol Chem 266:12127

    Google Scholar 

  14. Molloy SS, Bresnahan PA, Leppla SH, Klimpel KR, Thomas G (1992) J Biol Chem 267:16396

    CAS  Google Scholar 

  15. Bergeron F, Ledue R, Day R (2000) J Mol Endocrinol 24:1

    Article  CAS  Google Scholar 

  16. Rungrotmongkol T, Decha P, Sompornpisut P, Malaisree M, Intharathep P, Nunthaboot N, Udommaneethanakit T, Aruksakunwong O, Hannongbua S (2009) Protein 76:62

    Article  CAS  Google Scholar 

  17. Thomas G (2002) Mol Cell Biol 3:753

    CAS  Google Scholar 

  18. Henrich S, Cameron A, Bourenkov GP, Kiefersauer R, Huber R, Lindberg I, Bode W, Than ME (2003) Nat Struct Biol 10:520

    Article  CAS  Google Scholar 

  19. Nakayama K (1997) Biochem J 327:625

    CAS  Google Scholar 

  20. Aruksakunwong O, Malaisree M, Decha P, Sompornpisut P, Parasuk V, Pianwanit S, Hannongbua S (2007) Biophys J 92:798

    Article  CAS  Google Scholar 

  21. Malaisree M, Rungrotmongkol T, Decha P, Intharathep P, Aruksakunwong O, Hannongbua S (2008) Proteins 71:1908

    Article  CAS  Google Scholar 

  22. Discovery Studio 2.0, Accelrys Inc, San Diego, CA, USA

  23. Sheik SS, Sundararajan P, Hussain ASZ, Sekar K (2002) Bioinformatics 18:1548

    Article  CAS  Google Scholar 

  24. Gopalakrishnan K, Sowmiya G, Sheik SS, Sekar K (2007) Prot Pept Lett 14:669

    Article  CAS  Google Scholar 

  25. Case DA, Darden TA, Cheatham TE, Simmerling CL, Wang J, Duke RE, Luo R, Merz KM, Pearlman DA, Crowley M, Walker RC, Zhang W, Wang B, Hayik S, Roitberg A, Seabra G, Wong KF, Paesani F, Wu X, Brozell S, Tsui V, Gohlke H, Yang L, Tan C, Mongan J, Hornak V, Cui G, Beroza P, Mathews DH, Schafmeister C, Ross WS, Kollman PA (2006) AMBER 9. University of California, San Francisco

    Google Scholar 

  26. Payungporn S, Chutinimitkul S, Chaisingh A, Damrongwantanapokin S, Buranathai C, Amonsin A, Theamboonlers A, Poovorawan Y (2006) J Virol Methods 131:143

    Article  CAS  Google Scholar 

  27. Poovorawan Y (2007) ScienceAsia 33:87

    Article  Google Scholar 

  28. Amonsin A, Chutinimitkul S, Pariyothorn N, Songserm T, Damrongwantanapokin S, Puranaveja S, Jam-On R, Sae-Heng N, Payungporn S, Theamboonlers A, Chaisingh A, Tantilertcharoen R, Suradhat S, Thanawongnuwech R, Poovorawan Y (2006) Virus Res 122:194

    Article  CAS  Google Scholar 

  29. Mintseris J, Wiehe K, Pierce B, Anderson R, Chen R, Janin J, Weng Z (2005) Proteins 60:214

    Article  CAS  Google Scholar 

  30. Chen R, Li L, Weng Z (2003) Protein 52:80

    Article  CAS  Google Scholar 

  31. Li H, Robertson AD, Jensen JH (2005) Proteins 61:704

    Article  CAS  Google Scholar 

  32. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T (2003) J Comput Chem 24:1999

    Article  CAS  Google Scholar 

  33. Lee MC, Duan Y (2004) Proteins 55:620

    Article  CAS  Google Scholar 

  34. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  35. Berendsen HJC, Postma JPM, Gunsteren WFV, Dinola A (1984) J Chem Phys 81:3684

    Article  CAS  Google Scholar 

  36. Ryckaert JP, Ciccotti G, Berendsen HJC (1997) J Comput Phys 23:327

    Article  Google Scholar 

  37. York DM, Darden TA, Pedersen LG (1993) J Chem Phys 99:8345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research University Project of CHE and Ratchadaphiseksomphot Endowment Fund (HR1155A) and the Thai Government Stimulus Package 2 (TKK2555), under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture. P.K. and P.Y. are grateful for the postdoctoral fellowship from the Ratchadaphiseksomphot Endowment Fund from Chulalongkorn University. P.K. acknowledges the funding for New Research from the Thailand Research Fund. The authors would like to thank the Computational Chemistry Unit Cell, Faculty of Science, Chulalongkorn University, and the Institute of Theoretical Chemistry, University of Vienna, for providing research facilities, software packages, and computing times. The Center of Excellence for Petroleum, Petrochemicals and Advanced Materials, Chulalongkorn University, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supot Hannongbua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kongsune, P., Rungrotmongkol, T., Nunthaboot, N. et al. Molecular insights into the binding affinity and specificity of the hemagglutinin cleavage loop from four highly pathogenic H5N1 isolates towards the proprotein convertase furin. Monatsh Chem 143, 853–860 (2012). https://doi.org/10.1007/s00706-011-0690-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0690-4

Keywords

Navigation