Skip to main content
Log in

Low-dimensional compounds containing bioactive ligands. I: Crystal structure, spectroscopic, and thermal properties of the first row transition metal coordination compounds with clioquinol

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Coordination compounds of first row transition metals from Mn to Zn with clioquinol (5-chloro-7-iodo-8-hydroxyquinoline, CQ) were prepared and characterized by infrared spectroscopy and thermal analysis. The composition of these compounds determined by elemental analysis is [M(CQ)2(H2O)2] for Mn and Zn, [M(CQ)2] for Fe, Co, Ni, and Cu, and NH2(CH3)2[Ni(CQ)3]·DMF·H2O (DMF = N,N-dimethylformamide). X-ray structure analysis revealed that the [Ni(CQ)2] complex is a molecular coordination compound with Ni(II) square-planarly coordinated by nitrogen and oxygen atoms of two trans-arranged bidentate molecules of clioquinol. On the other hand, NH2(CH3)2[Ni(CQ)3]·DMF·H2O is an ionic compound containing three clioquinol molecules coordinated to the central atom in a deformed octahedral geometry thus forming a complex anion. Its negative charge is balanced by the dimethylammonium cation and the structure also contains solvated water and DMF molecules. Long-range interactions and hydrogen bonds in these two complexes were also investigated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Scheme 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. McGrew RE, McGrew MP (1985) Encyclopedia of medical history. McGraw-Hill, New York

    Google Scholar 

  2. Salmon S, Santorelli A (1987) Basic and clinical pharmacology. Appleton & Lange, Norwalk

    Google Scholar 

  3. Zhang CX, Lippard SJ (2003) Curr Opin Chem Biol 7:481

    Article  CAS  Google Scholar 

  4. Hollingshead R (1956) Oxine and its derivatives, vol III. Butterworths, London

    Google Scholar 

  5. Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE (2005) Cancer Res 65:3389

    Article  CAS  Google Scholar 

  6. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim YS, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI (2001) Neuron 30:665

    Article  CAS  Google Scholar 

  7. LeVine H, Ding Q, Walker JA, Voss RS, Augelli-Szafran CE (2009) Neurosci Lett 465:99

    Article  CAS  Google Scholar 

  8. Vaira MD, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P (2004) Inorg Chem 43:3795

    Article  Google Scholar 

  9. Kaur D, Yantiri F, Rajagopalan S, Kumar J, Mo JQ, Boonplueang R, Viswanath V, Jacobs R, Yang L, Beal MF, DiMonte D, Volitaskis I, Ellerby L, Cherny RA, Bush AI, Andersen JK (2003) Neuron 37:899

    Article  CAS  Google Scholar 

  10. Miyashita Y, Ohashi T, Imai A, Amir N, Fujisawa K, Okamoto K (2005) Sci Technol Adv Mater 6:660

    Article  CAS  Google Scholar 

  11. Horák M, Papoušek D (1976) Infračervená spektra a struktura molekul. Academia, Praha

    Google Scholar 

  12. Zajcev BE, Andronova NA, Djumaev KM, Smirnov LD (1971) Khim Geterotsikl Soedin 1535

  13. Leon Palomino MI, Zajcev BE, Gashev SB, Nikitin SV, Smirnov LD, Kovalchukova OV (1991) Khim Geterotsikl Soedin 1381

  14. Rospenk M, Leroux N, Zeegers-Huyskens Th (1997) J Mol Spectrosc 183:245

  15. Wagner CC, Calvo S, Torre MH, Baran EJ (2007) J Raman Spectrosc 38:373

    Article  CAS  Google Scholar 

  16. Arjunana V, Mohanb S, Ravindranc P, Mythilid CV (2009) Spectrochim Acta A 72:783

    Article  Google Scholar 

  17. González-Baró AC, Baran EJ (1997) Monatsh Chem 128:323

    Article  Google Scholar 

  18. Garcia-Granda S, Gomez-Beltran F (1986) Acta Crystallogr C 42:33

    Article  Google Scholar 

  19. Garcia-Granda S, Beurskens PT, Behm HJJ, Gomez-Beltran F (1987) Acta Crystallogr C 43:39

    Article  Google Scholar 

  20. Kappaun S, Eder S, Sax S, Mereiter K, List EJW, Slugovc CJ (2006) J Mater Chem 16:4389

    Article  CAS  Google Scholar 

  21. Gniewek A, Ziolkowski JJ, Lis T (2006) Acta Crystallogr E 62:m1428

    Article  Google Scholar 

  22. Garcia-Granda S, Jansen C, Beurskens PT, Behm HJJ, Gómez-Beltrán F (1988) Acta Crystallogr C 44:176

    Article  Google Scholar 

  23. Diffraction Oxford (2004) Crysalis CCD and crysalis RED. Oxford Diffraction, Oxford

    Google Scholar 

  24. Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Göttingen

    Google Scholar 

  25. Nardelli M (1999) J Appl Crystallogr 32:563

    Article  CAS  Google Scholar 

  26. Brandenburg K (2000) DIAMOND (Release 2.1e). Crystal Impact GbR, Bonn

    Google Scholar 

Download references

Acknowledgments

This work was supported by the ERDF EU (European Union European regional development fond) grant, under the contract No. ITMS26220120005 and by the internal P.J. Šafárik University grant VVGS PF 27/2011/CH. The authors are very grateful to Prof. Vladimír Zeleňák from P.J. Šafárik University in Košice for the thermal analysis measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Potočňák.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potočňák, I., Vranec, P. Low-dimensional compounds containing bioactive ligands. I: Crystal structure, spectroscopic, and thermal properties of the first row transition metal coordination compounds with clioquinol. Monatsh Chem 143, 217–226 (2012). https://doi.org/10.1007/s00706-011-0678-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0678-0

Keywords

Navigation