Skip to main content
Log in

Computational studies on aluminum nitride and aluminum phosphide nanotubes: density functional calculations of 27Al electric field gradient tensors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Nuclear quadrupole resonance (NQR) parameters including the nuclear quadrupole coupling constant (C Q) and asymmetry parameter (η Q) at the sites of various 27Al nuclei on (6,0) zigzag and (4,4) armchair AlN and AlP nanotubes (NTs) were calculated by using the density functional theory (DFT) method to study the properties of the electronic structures of the nanotubes. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. The calculated electric field gradient tensors were converted to the nuclear quadrupole resonance parameters, C Q constant, and η Q parameter. The quadrupole resonance parameters in each of the structures were divided into four layers with equivalent electric field gradient tensor eigenvalues in each layer. The results show that, in AlN and AlP nanotubes, the Al atoms at the edges of the nanotubes play dominant roles in determining the electronic behavior of the nanotubes and important roles in growth and synthesis processes of the nanotubes. Also the average values of C Q(27Al) for the AlNNT models were higher in comparison with the AlPNT models, while variations of C Q(27Al) in AlPNTs were greater in comparison with in AlNNTs.

Graphical abstract

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187

    Article  CAS  Google Scholar 

  6. Mirzaei M, Shif A, Hadipour NL (2008) Chem Phys Lett 461:246

    Article  CAS  Google Scholar 

  7. Mirzaei M, Mirzaei M (2011) Monatsh Chem 142:115

    Article  CAS  Google Scholar 

  8. Mirzaei M, Mirzaei M (2011) Solid State Sci 13:244

    Article  CAS  Google Scholar 

  9. Das TP, Han EL (1958) Nuclear quadrupole resonance spectroscopy. Academic, New York

    Google Scholar 

  10. Bailey WC (2000) Chem Phys 252:57

    Article  CAS  Google Scholar 

  11. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179

    Article  CAS  Google Scholar 

  12. Bengu E, Marks LD (2001) Phys Rev Lett 86:2385

    Article  CAS  Google Scholar 

  13. Baei MT, Sayyed Alang SZ, Moradi AV, Torabi P (2011) J Mol Model. doi:10.1007/s00894-011-1130-4

  14. Mothana B, Ban F, Boyd RJ (2005) Chem Phys Lett 401:7

    Article  CAS  Google Scholar 

  15. Pyykkö P (2001) Mol Phys 99:1617

    Article  Google Scholar 

  16. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B03. Gaussian Inc., Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T. Computational studies on aluminum nitride and aluminum phosphide nanotubes: density functional calculations of 27Al electric field gradient tensors. Monatsh Chem 143, 545–549 (2012). https://doi.org/10.1007/s00706-011-0674-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0674-4

Keywords

Navigation