Skip to main content
Log in

Ge-doped (4,4) armchair single-walled boron phosphide nanotube as a semiconductor: a computational study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of Ge-doped boron phosphide nanotubes (BPNTs) as a semiconductor at the B3LYP/6-31G* level of theory in order to evaluate the influence of Ge doping on (4,4) armchair BPNTs. We extended the DFT calculations to predict the electronic structure properties of Ge-doped boron phosphide nanotubes, which are very important for production of solid-state devices and other applications. The isotropic (CSI) and anisotropic (CSA) chemical shielding parameters for the sites of various 11B and 31P atoms, and the quadrupole coupling constant (C Q) and asymmetry parameter (η Q) at the sites of various 11B nuclei, were calculated in pristine and Ge-doped (4,4) armchair BPNT models. The calculations indicated that, in these two forms of Ge-doped BPNTs, the binding energies are not attractive and do not characterize a chemisorption process. In comparison with the pristine model, the band gap of the two forms of Ge-doped BPNTs is reduced and increases their electrical conductance. The dipole moments of the Ge-doped BPNT structures show notable changes with respect to the pristine model. The nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) results show that the GeB model is a more reactive material than the pristine or GeP model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kroto HW, Health JR, Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  3. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  4. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  5. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079

    Article  CAS  Google Scholar 

  6. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187

    Article  CAS  Google Scholar 

  7. Baei MT, Soltani AR, Moradi AV, Tazikeh Lemeski E (2011) Comput Theor Chem 970:30

    Article  CAS  Google Scholar 

  8. Mirzaei M, Seif A, Hadipour NL (2008) Chem Phys Lett 461:246

    Article  CAS  Google Scholar 

  9. Moradian R, Azadi S, Vasheghani Farahani S (2008) Phys Lett A 372:6935

    Article  CAS  Google Scholar 

  10. Qian Z, Hou S, Zhang J, Li R, Shen Z, Zhao X, Xue Z (2005) Physica E 30:81

    Article  CAS  Google Scholar 

  11. Baei MT, Sayyed Alang SZ, Moradi AV, Torabi P (2011) J Mol Model. doi:10.1007/s00894-011-1130-4

    Google Scholar 

  12. Mirzaei M, Mirzaei M (2010) J Mol Struct (Theochem) 951:69

    Article  CAS  Google Scholar 

  13. Wu Q, Hu Z, Liu C, Wang X, Chen Y (2005) J Phys Chem B 109:19719

    Article  CAS  Google Scholar 

  14. Roy S, Springborg M (2009) J Phys Chem C 113:81

    Article  CAS  Google Scholar 

  15. Zhang SL (2001) Phys Lett A 285:207

    Article  CAS  Google Scholar 

  16. Baei MT, Kaveh F, Torabi P, Sayyed Alang SZ (2011) E-J Chem 8:609

    Article  CAS  Google Scholar 

  17. Baei MT, Moghimi M, Torabi P, Moradi AV (2011) Comput Theor Chem 972:14

    Article  CAS  Google Scholar 

  18. Baei MT, Moradi AV, Torabi P, Moghimi M (2011) Monatsh Chem 142:1097

    Article  CAS  Google Scholar 

  19. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179

    Article  CAS  Google Scholar 

  20. Bengu E, Marks LD (2001) Phys Rev Lett 86:2385

    Article  CAS  Google Scholar 

  21. Baei MT, Torabi P, Moradi AV, Moghimi M (2011) Monatsh Chem 142:783

    Article  CAS  Google Scholar 

  22. Mothana B, Ban F, Boyd RJ (2005) Chem Phys Lett 401:7

    Article  CAS  Google Scholar 

  23. Drago RS (1992) Physical methods for chemists, 2nd edn. Saunders College Publishing, Florida

    Google Scholar 

  24. Pyykkö P (2001) Mol Phys 99:1617

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, revision B03. Gaussian Inc., Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T. Ge-doped (4,4) armchair single-walled boron phosphide nanotube as a semiconductor: a computational study. Monatsh Chem 143, 881–889 (2012). https://doi.org/10.1007/s00706-011-0673-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0673-5

Keywords

Navigation