Skip to main content
Log in

Synthesis, characterization, and biological activity of some transition metal complexes with Schiff base ligands derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The coordination behaviour of a Schiff base with SNO donation sites, derived from condensation of 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde, towards some bi- and trivalent metal ions, namely Cr(III), Mn(II), Fe(III), Co(II) (Cl, ClO4), Ni(II) (Cl, ClO4), Cu(II), and Zn(II), is reported. The metal complexes were characterized on the basis of elemental analysis, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG, and DTA). The ionization constant of the Schiff base under investigation and the stability constants of its metal chelates were calculated pH-metrically at 25 °C and ionic strength µ = 0.1 M in 50% (v/v) ethanol–water mixture. The chelates were found to have octahedral (Mn(II)), trigonal bipyramidal (Co(II), Ni(II), Zn(II)), and tetrahedral (Cr(III), Fe(III), and Cu(II)) structures. The ligand and its binary chelates were subjected to thermal analyses and the different thermodynamic activation parameters were calculated from their corresponding DTG curves to throw more light on the nature of changes accompanying the thermal decomposition process of these compounds. The free Schiff base ligand and its metal complexes were tested in vitro against Aspergillus flavus, Candida albicans, C. tropicalis, and A. niger fungi and Bacillus subtilis and Escherichia coli bacteria in order to assess their antimicrobial potential. The results indicate that the ligand and its metal complexes possess antimicrobial properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wang M, Wang LF, Li YZ, Li QX, Xu ZD, Qu DQ (2001) Transition Met Chem 26:307

    Article  CAS  Google Scholar 

  2. Gulerman NN, Rollas S, Erdeniz H, Kiraj M (2001) J Pharm Sci 26:1

    CAS  Google Scholar 

  3. Tarasconi P, Capacchi S, Pelosi G, Corina M, Albertini R, Bonati A, Dall’Aglio PP, Lunghi P, Pinelli S (2000) Bioorg Med Chem 8:154

    Article  Google Scholar 

  4. Charo J, Lindencrona JA, Carlson LM, Hinkula J, Kiessling R (2004) J Virol 78:11321

    Article  CAS  Google Scholar 

  5. Mishra V, Pandeya SN, Anathan S (2000) Acta Pharm Turc 42:139

    CAS  Google Scholar 

  6. Mohamed GG (2006) Spectrochim Acta A 64:188

    Article  Google Scholar 

  7. Mohamed GG, Omar MM, Hindy AMM (2005) Spectrochim Acta A 62:1140

    Article  Google Scholar 

  8. Mohamed GG, Sharaby CM (2007) Spectrochim Acta A 66:949

    Article  Google Scholar 

  9. Omar MM, Mohamed GG, Ibrahim AA (2009) Spectrochim Acta A 73:358

    Article  CAS  Google Scholar 

  10. Abdallah SM, Mohamed GG, Zayed MA, Abu Elela M (2009) Spectrochim Acta A 73:833

    Article  Google Scholar 

  11. Mohamed GG, Abd El-Wahab ZH (2003) J Therm Anal Calorim 73:347

    Article  CAS  Google Scholar 

  12. Mohamed GG, Omar MM, Ibrahim AA (2009) Eur J Med Chem 44:4801

    Article  CAS  Google Scholar 

  13. Dwivedi V, Agarwal RK (1991) Indian J Pharm Sci 53:82

    CAS  Google Scholar 

  14. Mishra L, Singh VK, Dubey NK, Mishra AK (1993) Biosci Biotech Biochem 57:989

    Article  CAS  Google Scholar 

  15. Freeman PH, Worthington PA, Rathmell WG (1982) Eur Pat Appl EP 0044:407

    Google Scholar 

  16. Hilton JL (1969) J Agric Food Chem 17:182

    Article  CAS  Google Scholar 

  17. Joshi CK, Dubey K (1979) Phamazie 34:801

    CAS  Google Scholar 

  18. Mishra L, Said MK (1996) Indian J Chem 35A:304

    CAS  Google Scholar 

  19. Agrawal RK, Rastogi SC (1983) Thermochim Acta 63:363

    Article  Google Scholar 

  20. Savant VV, Ramamurthy P, Patel CC (1970) J Less-Common Met 22:479

    Article  CAS  Google Scholar 

  21. Srivastava AK, Sharma S, Agrawal RK (1982) Inorg Chim Acta 61:235

    Article  CAS  Google Scholar 

  22. Arora K (1995) Asian J Chem 7:508

    Google Scholar 

  23. Bhave NS, Iyer VS (1987) J Therm Anal 32:1369

    Article  CAS  Google Scholar 

  24. Calu N, Odochian L, Brinzan GL, Bilba N (1985) J Therm Anal 30:547

    Google Scholar 

  25. Naik HSB, Siddaramiah PGR, Ramappa PG (1996) Thermochim Acta 289:279

  26. Maravalli PB, Goudar TR (1999) Thermochim Acta 325:35

    Article  CAS  Google Scholar 

  27. Irving H, Rossotti HS (1953) J Chem Soc 3397

  28. Irving H, Rossotti HS (1954) J Chem Soc 2904

  29. Irving H, Williams RJP (1948) Nature 162:746

    Article  CAS  Google Scholar 

  30. Jones RD, Summerville DA, Basolo F (1979) Chem Rev 79:139

    Article  CAS  Google Scholar 

  31. Orgel LE (1966) An introduction to transition metal chemistry. Ligand field theory. Methuen, London

    Google Scholar 

  32. Soliman AA, Linert W (1999) Thermochim Acta 333:67

    Article  Google Scholar 

  33. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1966) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  34. Blake AJ, Lavery AJ, Schröder M (1996) Acta Crystallogr C52:37

    CAS  Google Scholar 

  35. Coats AW, Redfern JP (1964) Nature 201:68

    Article  CAS  Google Scholar 

  36. Shukla PR, Singh VK, Jaiswal AM, Narain G (1983) J Indian Chem Soc 60:321

    CAS  Google Scholar 

  37. Omar MM, Mohamed GG, Hindy AMM (2006) J Thermal Anal Calorim 86:315

    Article  CAS  Google Scholar 

  38. Jawetz E, Melnick JL, Adelberg EA (1979) Review of medical microbiology, 16th edn. Lang Medical, Los Angeles

    Google Scholar 

  39. Hughes WH, Stewart HC (1970) Concise antibiotic treatment. Butterworth, London, p 418

    Google Scholar 

  40. Brown NRW (1975) Resistance of Pseudomonas aeruginosa. Wiley, London

    Google Scholar 

  41. Nikaido H, Nakae T (1979) Adv Microb Physiol 20:163

    Article  CAS  Google Scholar 

  42. Shanson DC (1989) Microbiology in clinical practice, 2nd edn. Wright, London, p 657

    Google Scholar 

  43. Sari N, Arslan S, Logoglu E, Sakiyan I (2003) Gazi Univ J Sci 16:283

    Google Scholar 

  44. Vogel AI (1962) Quantitative inorganic analysis including elemental instrumental analysis, 2nd edn. Longmans, London

    Google Scholar 

  45. Sung K, Lee AR (1992) J Heterocycl Chem 29:1102

    Article  Google Scholar 

  46. Shawali AS, Darwish ES, Altalbawy FMA (2008) Asian J Spectrosc 11:113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farag M. A. Altalbawy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altalbawy, F.M.A., Mohamed, G.G., Abou El-Ela Sayed, M. et al. Synthesis, characterization, and biological activity of some transition metal complexes with Schiff base ligands derived from 4-amino-5-phenyl-4H-1,2,4-triazole-3-thiol and salicaldehyde. Monatsh Chem 143, 79–89 (2012). https://doi.org/10.1007/s00706-011-0626-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0626-z

Keywords

Navigation