Tartrate- and imidazole-derived diketones and diols: preparation and stability constants of their Cu2+ complexes

  • Michal Paták
  • Oldřich Pytela
  • Filip Bureš
Original Paper


Overall, six tartrate- and imidazole-derived ketones and diols were synthesized in a stepwise manner as model compounds for the coordination of Cu2+ ions. The stability constants of copper(II) complexes were studied spectrophotometrically. It was found that the two model structures coordinate Cu2+ ions differentially.

Graphical abstract


Heterocycles Ligands Stability constant Metal complexes UV/vis spectroscopy 



This research was supported by the Czech Science Foundation (203/08/0208) and the Ministry of Education, Youth, and Sport of the Czech Republic (MSM 002167501).


  1. 1.
    Gawroński J, Gawrońska K (1999) Tartaric and malic acids in synthesis. Wiley, New YorkGoogle Scholar
  2. 2.
    Blaser H-U (1992) Chem Rev 92:935CrossRefGoogle Scholar
  3. 3.
    Ghosh AK, Koltun ES, Bilcer G (2001) Synthesis 9:1281CrossRefGoogle Scholar
  4. 4.
    Gal J (2008) Chirality 20:5CrossRefGoogle Scholar
  5. 5.
    Parker D (1991) Chem Rev 91:1441CrossRefGoogle Scholar
  6. 6.
    Horn HJ, Holland EG, Hazleton LW (1957) J Agric Food Chem 5:759CrossRefGoogle Scholar
  7. 7.
    Yoon TP, Jacobsen EN (2003) Science 299:1691CrossRefGoogle Scholar
  8. 8.
    Benessere V, Del Litto R, De Roma A, Ruffo F (2010) Coord Chem Rev 254:390CrossRefGoogle Scholar
  9. 9.
    Kagan HB, Dang TP (1972) J Am Chem Soc 94:6429CrossRefGoogle Scholar
  10. 10.
    Frankland PF, Twiss DF (1904) J Chem Soc 85:1666Google Scholar
  11. 11.
    Seebach D, Beck AK, Heckel A (2001) Angew Chem Int Ed 40:92CrossRefGoogle Scholar
  12. 12.
    Weidmann B, Wilder L, Olivero AG, Maycock CD, Seebach D (1981) Helv Chim Acta 64:357CrossRefGoogle Scholar
  13. 13.
    Duthaler RO, Hafner A (1992) Chem Rev 92:807CrossRefGoogle Scholar
  14. 14.
    Bureš F, Kulhánek J (2005) Tetrahedron Asymmetry 16:1347CrossRefGoogle Scholar
  15. 15.
    Marek A, Kulhánek J, Ludwig M, Bureš F (2007) Molecules 12:1183CrossRefGoogle Scholar
  16. 16.
    Bureš F, Szotkowski T, Kulhánek J, Pytela O, Ludwig M, Holčapek M (2006) Tetrahedron Asymmetry 17:900CrossRefGoogle Scholar
  17. 17.
    Marek A, Kulhánek J, Bureš F (2009) Synthesis 2:325Google Scholar
  18. 18.
    Sívek R, Pytela O, Bureš F (2008) J Heterocycl Chem 45:1621CrossRefGoogle Scholar
  19. 19.
    Sívek R, Bureš F, Pytela O, Kulhánek J (2008) Molecules 13:2326CrossRefGoogle Scholar
  20. 20.
    Kulhánek J, Bureš F, Šimon P, Schweizer WB (2008) Tetrahedron Asymmetry 19:2426CrossRefGoogle Scholar
  21. 21.
    Bureš F, Kulhánek J, Růžička A (2009) Tetrahedron Lett 50:3042CrossRefGoogle Scholar
  22. 22.
    Mash EA, Nelson KA, Van Deusen S, Hemperly SS (1990) Org Synth 68:92Google Scholar
  23. 23.
    Kikugawa Y (1981) Synthesis 2:124CrossRefGoogle Scholar
  24. 24.
    Arduengo AJ, Rasika Dias HV, Dixon DA, Harlow RL, Klooster WT, Koetzle TF (1994) J Am Chem Soc 116:6812CrossRefGoogle Scholar
  25. 25.
    Bredereck H, Gompper R, Hayer D (1959) Chem Ber 92:338CrossRefGoogle Scholar
  26. 26.
    Prasad KR, Chandrakumar A (2007) Tetrahedron 63:1798CrossRefGoogle Scholar
  27. 27.
    Ohshima T, Shibuguchi T, Fukuta Y, Shibasaki M (2004) Tetrahedron 60:7743CrossRefGoogle Scholar
  28. 28.
    Zinchenko AA, Sergeyev VG, Kabanov VA, Murata S, Yoshikawa K (2004) Angew Chem Int Ed 43:2378CrossRefGoogle Scholar
  29. 29.
    Maeder M (1987) Anal Chem 59:527CrossRefGoogle Scholar
  30. 30.
    Tauler R, Kowalski B, Fleming S (1993) Anal Chem 65:2040CrossRefGoogle Scholar
  31. 31.
    OPchem, O. Pytela, Version 5.02, webpage:

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Institute of Organic Chemistry and Technology, Faculty of Chemical TechnologyUniversity of PardubicePardubiceCzech Republic

Personalised recommendations