Skip to main content
Log in

Arsenopyrite mineral based electrochemical sensor for acid–base titrations in γ-butyrolactone and propylene carbonate

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A novel acid–base sensor based on the natural mineral arsenopyrite for titrations in γ-butyrolactone and propylene carbonate is validated and studied. This sensor, which requires only small sample volumes, was employed for the titrations of some important organic acids (benzoic, anthranilic, and salicylic acid) with potassium hydroxide. A stable stationary potential was attained at the arsenopyrite electrode in γ-butyrolactone and propylene carbonate in less than 5 min. The change in the electrode potential from the acidic to basic region was 379 to −160 mV in γ-butyrolactone and 434 to −67 mV in propylene carbonate. The arsenopyrite electrode showed a relatively fast response time in the investigated solvents (11 s in γ-butyrolactone and 14 s in propylene carbonate). It can be used without any time limit or without considerable divergence in the potential. The investigated electrode showed a linear dynamic response for p-toluenesulfonic acid concentrations in the range 0.1–0.001 M, and a sub-Nernst dependence in γ-butyrolactone as well as in propylene carbonate. Unlike traditional pH titration, an end-point color indicator is unnecessary in this method, and real-time monitoring can be realized. The relative standard deviations for measurements of benzoic, anthranilic, and salicylic acids were 0.10–0.31%, which show that the repeatability and accuracy of measurements taken with the sensor are satisfactory.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Austria)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Izutsu K (2002) Electrochemistry in nonaqueous solution. Wiley-VCH, Weinheim

  2. Edwall G (1979) Electrochim Acta 24:595

    Article  CAS  Google Scholar 

  3. Gomes MAB, Bulhoes LOS (1984) J Electroanal Chem 165:289

    Article  CAS  Google Scholar 

  4. Fouda AS (1980) J Electroanal Chem 110:357

    Article  CAS  Google Scholar 

  5. Wilhelm D, Voigt H, Treichel W, Ferretti R, Prasad S (1991) Sensor Actuat B Chem B4:145

    Article  CAS  Google Scholar 

  6. Nomura K, Ujihira Y (1988) Anal Chem 60:2564

    Article  CAS  Google Scholar 

  7. Hitchman ML, Ramanathan S (1988) Analyst 113:35

    Article  CAS  Google Scholar 

  8. Leles MIG, Capelato MD (1991) Quimica Nova 14:38

    Google Scholar 

  9. Capelato MD, Cassiano NM (1998) Quimica Nova 21:494

    Article  Google Scholar 

  10. Efron C, Ariel M (1979) Anal Chim Acta 108:395

    Article  CAS  Google Scholar 

  11. Kaehler HC, Zahlout A, Brito F (1970) An Quim 66:221

    CAS  Google Scholar 

  12. Niedrach LW, Stoddard WH (1984) J Electrochem Soc 131:1017

    Article  CAS  Google Scholar 

  13. Namura K, Ugihia Y (1987) Anal Sci 3:125

    Article  Google Scholar 

  14. Glab S, Hulanicki A, Edwall S, Ingman F (1989) Crit Rev Anal Chem 21:29

    Article  CAS  Google Scholar 

  15. Centeno B, Tascon ML, Varquez MD, Batanero PS (1991) Electrochim Acta 36:277

    Article  CAS  Google Scholar 

  16. Ooi K, Miyai Y, Katoh S, Maeda H, Abe M (1989) Langmuir 5:150

    Article  CAS  Google Scholar 

  17. Ammundsen B, Jones DJ, Roziere J, Burns GR (1995) Chem Mater 7:2151

    Article  CAS  Google Scholar 

  18. Stanić Z, Stepanović J (2010) Monatsh Chem 141:137

    Article  Google Scholar 

  19. Mihajlovic R, Stanic Z (2005) J Solid State Electrochem 9:558

    Article  CAS  Google Scholar 

  20. Cruz R, Luna-Sanchez RM, Lapidus GT, Gonzalez I, Monroy M (2005) Hydrometallurgy 78:198

    Article  CAS  Google Scholar 

  21. Urbano G, Melendez AM, Reyes VE, Veloz MA, Gonzalez I (2007) Int J Miner Process 82:148

    Article  CAS  Google Scholar 

  22. Nava JL, Oropeza JL, Gonzalez I (2002) Electrochim Acta 47:1513

    Article  CAS  Google Scholar 

  23. Cisneros-Gonzales I, Oropeza-Guzman MT, Gonzalez I (2000) Electrochim Acta 45:2729

    Article  Google Scholar 

  24. Velazquez P, Leinen D, Pascual J, Ramos-Barrado JR, Grez P, Gomez H, Schrebler R, Del Rio R, Cordova R (2005) J Phys Chem B 109:4977

    Article  Google Scholar 

  25. Costa MC, Botelho do Rego AM, Abrantes LM (2002) Int J Miner Process 65:83

    Article  CAS  Google Scholar 

  26. Lee JS, Park DS (1989) J Catal 120:46

    Article  CAS  Google Scholar 

  27. Parks GA, Bruyn PL (1962) J Phys Chem 66:967

    Article  CAS  Google Scholar 

  28. Dong C, Wang W (2006) Anal Chim Acta 562:23

    Article  CAS  Google Scholar 

  29. Glombitza BW, Schmidt PC (1994) J Pharm Sci 83:751

    Article  CAS  Google Scholar 

  30. Villari A, Micali N, Fresta M, Puglisi G (1994) Analyst 119:1561

    Article  CAS  Google Scholar 

  31. Hassan SSM, Hamada MA (1988) Analyst 113:1709

    Article  CAS  Google Scholar 

  32. Newmayr M, Friedrich O, Sontag G (1993) Anal Chim Acta 273:469

    Article  Google Scholar 

  33. Kees F, Jehnich D, Grobecker H (1996) J Chromatogr B 677:172

    Article  Google Scholar 

  34. Gichner T, Voutsinas G, Patrineli A, Kappas A, Plewa M (1994) Mutat Res 309:201

    Article  CAS  Google Scholar 

  35. Jagadeesh RV, Puttaswamy N, Vaz N, Gowda NMM (2008) AIChE J 54:756

    Article  CAS  Google Scholar 

  36. Kumar A, Bansal D, Bajaj K, Sharma S, Srivastava VK (2003) Bioorg Med Chem 11:5281

    Article  CAS  Google Scholar 

  37. Sorenson JRJ (1976) J Med Chem 19:135

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science and Technological Development of the Republic of Serbia (project no. 172036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zorka Stanić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanić, Z., Stepanović, J. & Simić, Z. Arsenopyrite mineral based electrochemical sensor for acid–base titrations in γ-butyrolactone and propylene carbonate. Monatsh Chem 143, 1–6 (2012). https://doi.org/10.1007/s00706-011-0567-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0567-6

Keywords