Skip to main content
Log in

The diradical character of polyacenequinododimethides

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

An electronic structure study of singlet and triplet states of two series of polyacenequinododimethides was performed using the B3LYP method. It was found that the ground state of all examined polyacenequinododimethides is a singlet with significant diradical character. The diradical character of the compounds under investigation was estimated using the unrestricted symmetry-broken and complete active space methods. It was shown that polyacene-2,3-quinododimethides have more pronounced diradical character than polyacene-2,x-quinododimethides. The diradical character of polyacene-2,x-quinododimethides monotonically increases with their increasing molecular size. Within the series of polyacene-2,3-quinododimethides the diradical character is not a monotonic function of the number of hexagons. It was found that pentacene-2,3-quinododimethide has the most pronounced diradical character in this series. It can be predicted on the basis of the singlet–triplet gap values that even higher polyacenequinododimethides will be singlet, but not triplet molecules.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Clar E (1964) Polycyclic hydrocarbons, vol 1. Academic, New York

    Google Scholar 

  2. Anthony JE (2006) Chem Rev 106:5028

    Article  CAS  Google Scholar 

  3. Anthony JE (2008) Angew Chem Int Ed 47:452

    Article  CAS  Google Scholar 

  4. Bendikov M, Wudl F, Perepichka DF (2004) Chem Rev 104:4891

    Article  CAS  Google Scholar 

  5. Würthner F, Schmidt R (2006) Chem Phys Chem 7:793

    Google Scholar 

  6. Howard JB, Longwell JP, Marr JA, Pope CJ (1995) Combust Flame 101:262

    Article  CAS  Google Scholar 

  7. Otero-Lobato MJ, Kaats-Richters VEM, Havenith RWA, Jenneskens LW, Seinen W (2004) Mutat Res 564:39

    CAS  Google Scholar 

  8. Wang J, He X, Mulder PPJ, Boere BB, Cornelisse J, Lugtenburg J, Busby WFJ (1999) Carcinogenesis 20:1137

    Article  CAS  Google Scholar 

  9. Aihara J (1975) Bull Chem Soc Jpn 48:3637

    Article  CAS  Google Scholar 

  10. Randić M (2003) Chem Rev 103:3449

    Article  Google Scholar 

  11. Schleyer PvR, Puhlhofer F (2002) Org Lett 4:2873

    Article  CAS  Google Scholar 

  12. Hajgató B, Deleuze MS, Ohno K (2006) Chem Eur J 12:5757

    Article  Google Scholar 

  13. Aihara J, Makino M (2008) Chem Asian J 3:585

    Article  CAS  Google Scholar 

  14. Gleicher GJ, Newkirk DD, Arnold JC (1972) J Am Chem Soc 95:2526

    Article  Google Scholar 

  15. Montgomery LK, Huffman JC, Jurczak EA, Grendze MP (1986) J Am Chem Soc 108:6004

    Article  CAS  Google Scholar 

  16. Yamaguchi K, Jensen F, Dorigo A, Houk KN (1988) Chem Phys Lett 149:537

    Article  CAS  Google Scholar 

  17. McMasters DR, Wirz J (2001) J Am Chem Soc 123:238

    Article  CAS  Google Scholar 

  18. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416

    Article  CAS  Google Scholar 

  19. Kubo T, Shimizu A, Sakamoto M, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2005) Angew Chem 117:6722

    Article  Google Scholar 

  20. Kubo T, Sakamoto M, Nakasuji K (2005) Polyhedron 24:2522

    Article  CAS  Google Scholar 

  21. Poater J, Bofill JM, Alemany P, Solá M (2005) J Phys Chem A 109:10629

    Article  CAS  Google Scholar 

  22. Kubo T, Shimizu A, Uruichi M, Yakushi K, Nakano M, Shiomi D, Sato K, Takui T, Morita Y, Nakasuji K (2006) Org Lett 9:81

    Article  Google Scholar 

  23. Hachmann J, Dorando JJ, Avilés M, Chan GKL, J Chem Phys 127:134309/1

  24. Huang J, Kertesz M (2007) J Am Chem Soc 129:1634

    Article  CAS  Google Scholar 

  25. Nakano M, Takebe A, Kishi R, Fukui H, Minami T, Kubota K, Takahashi H, Kubo T, Kamada K, Ohta K, Champagne B, Botek E (2008) Chem Phys Lett 454:97

    Article  CAS  Google Scholar 

  26. Iketaki K, Kanai K, Shimizu A, Kubo T, Wang ZH, Ouchi Y, Morita Y, Nakasuji K, Seki K (2009) J Phys Chem C 113:1515

    Article  CAS  Google Scholar 

  27. Ishida T, Aihara J (2009) Phys Chem Chem Phys 11:7197

    Article  CAS  Google Scholar 

  28. Baumgartner P, Weltin E, Wagnière G, Heilbronner E (1965) Helv Chim Acta 48:751

    Article  CAS  Google Scholar 

  29. Angliker H, Rommel E, Wirz J (1982) Chem Phys Lett 87:208

    Article  CAS  Google Scholar 

  30. Roncali J (1997) Chem Rev 97:173

    Article  CAS  Google Scholar 

  31. Houk KN, Lee PS, Nendel M (2001) J Org Chem 66:5517

    Article  CAS  Google Scholar 

  32. McMasters DR, Wirz J (1997) J Am Chem Soc 119:8568

    Article  CAS  Google Scholar 

  33. Gutman I, Marković S, Jeremić S (2010) Polycyc Arom Comp 30:240

    Article  CAS  Google Scholar 

  34. Marković S, Đurđević J, Jeremić S, Gutman I (2010) J Mol Mod 17:805

    Article  Google Scholar 

  35. Marković S, Đurđević J, Jeremić S, Gutman I (2010) J Serb Chem Soc 75:1241

    Article  Google Scholar 

  36. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Rev A.1. Gaussian Inc., Wallingford

    Google Scholar 

  37. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  38. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  39. Yamaguchi K (1990) In: Carbo R, Klobukowski M (eds), Self-consistent field: theory and applications. Elsevier, Amsterdam, p 727

  40. Yamanaka S, Okumura M, Nakano M, Yamaguchi K (1994) J Mol Struct (Theochem) 310:205

    Article  Google Scholar 

  41. Dönhert D, Koutecký J (1980) J Am Chem Soc 102:1789

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Ministry of Science of Serbia (grants no. 172016 and 174033).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavko Radenković.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radenković, S., Marković, S., Kuč, R. et al. The diradical character of polyacenequinododimethides. Monatsh Chem 142, 1013–1019 (2011). https://doi.org/10.1007/s00706-011-0557-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0557-8

Keywords

Navigation