Skip to main content
Log in

NMR and NQR parameters of Si-doped (6,0) zigzag single-walled boron phosphide nanotubes: a density functional study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Electronic structure properties including bond lengths, bond angles, tip diameters, dipole moments, energies, band gaps, and nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) parameters were calculated using density functional theory (DFT) for Si-doped boron phosphide nanotubes (BPNTs). Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 program suite. The chemical shielding parameters for the sites of various 29Si, 11B, and 31P atoms, and quadrupole coupling constants and asymmetry parameters at the sites of various 11B nuclei, were calculated for the Si-doped (6,0) zigzag BPNT models. The dipole moments and average B–P bond lengths of the Si-doped BPNT structures show slight changes between the Si-doped and pristine models. For the SiB model the diameter values are increased, whereas in the SiP model the changes of the diameter values are negligible. In comparison with the pristine model, the band gaps of the SiB and SiP models are reduced, whereas their electrical conductance is increased. Comparison of the NMR and NQR parameters calculated for the SiB and SiP models showed that the electronic structure properties of the SiB (6,0) zigzag BPNT model are more strongly influenced than those of the SiP model.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187

    Article  CAS  Google Scholar 

  6. Mirzaei M, Mirzaei M (2010) Monatsh Chem 141:491

    Article  CAS  Google Scholar 

  7. Mirzaei M, Seif A, Hadipour NL (2008) Chem Phys Lett 461:246

    Article  CAS  Google Scholar 

  8. Moradian R, Azadi S, Vasheghani Farahani S (2008) Phys Lett A 372:6935

    Article  CAS  Google Scholar 

  9. Qian Z, Hou S, Zhang J, Li R, Shen Z, Zhao X, Xue Z (2005) Physica E 30:81

    Article  CAS  Google Scholar 

  10. Mirzaei M, Giahi M (2010) Physica E 42:1667

    Article  CAS  Google Scholar 

  11. Mirzaei M, Mirzaei M (2010) J Mol Struct (Theochem) 951:69

    Article  CAS  Google Scholar 

  12. Wu Q, Hu Z, Liu C, Wang X, Chen Y (2005) J Phys Chem B 109:19719

    Article  CAS  Google Scholar 

  13. Roy S, Springborg M (2009) J Phys Chem C 113:81

    Article  CAS  Google Scholar 

  14. Zhang SL (2001) Phys Lett A 285:207

    Article  CAS  Google Scholar 

  15. Mirzaei M (2009) Physica E 41:883

    Article  CAS  Google Scholar 

  16. Mirzaei M (2009) Z Phys Chem 223:815

    Article  CAS  Google Scholar 

  17. Bovey FA (1988) Nuclear magnetic resonance spectroscopy. Academic, San Diego

    Google Scholar 

  18. Baei MT, Moradi AV, Moghimi M, Torabi P (2011) J Comput Chem. 967:179–184. doi:10.1016/j.comptc.2011.04.015

    CAS  Google Scholar 

  19. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179

    Article  CAS  Google Scholar 

  20. Bengu E, Marks LD (2001) Phys Rev Lett 86:2385

    Article  CAS  Google Scholar 

  21. Mirzaei M, Hadipour NL (2006) J Phys Chem A 110:4833

    Article  CAS  Google Scholar 

  22. Mothana B, Ban F, Boyd RJ (2005) Chem Phys Lett 401:7

    Article  CAS  Google Scholar 

  23. Drago RS (1992) Physical Methods for Chemists, 2nd ed. Saunders College Publishing, Florida

    Google Scholar 

  24. Pyykkö P (2001) Mol Phys 99:1617

    Article  Google Scholar 

  25. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, revision B03. Gaussian Inc., Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Moradi, A.V., Torabi, P. et al. NMR and NQR parameters of Si-doped (6,0) zigzag single-walled boron phosphide nanotubes: a density functional study. Monatsh Chem 142, 1097–1104 (2011). https://doi.org/10.1007/s00706-011-0547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0547-x

Keywords

Navigation