Skip to main content
Log in

Theoretical study on the complexation of bambus[6]uril with the chloride, bromide, and iodide anions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril·Cl, bambus[6]uril·Br, and bambus[6]uril·I anionic complex species were derived. In these three complexes, each of the considered univalent halide anions, included in the center of the macrocyclic cavity, is bound by 12 weak C–H⋯X (X = Cl, Br, I) hydrogen bonds between methine hydrogen atoms on the convex face of the glycoluril units and the respective anion. The lengths of the C–H⋯X hydrogen bonds increase in the order Cl < Br < I.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L (2005) Angew Chem Int Ed 44:4844

    Article  CAS  Google Scholar 

  2. Lee JW, Samal S, Selvapalam N, Kim HJ, Kim K (2003) Acc Chem Res 36:621

    Article  CAS  Google Scholar 

  3. Liu S, Ruspic C, Mukhopadhyay P, Chakrabarti S, Zavalij PY, Isaacs L (2005) J Am Chem Soc 127:15959

    Article  CAS  Google Scholar 

  4. Freeman WA, Mock WL, Shih NY (1981) J Am Chem Soc 103:7367

    Article  CAS  Google Scholar 

  5. Mock WL, Shih NY (1983) J Org Chem 48:3618

    Article  CAS  Google Scholar 

  6. Mock WL, Shih NY (1986) J Org Chem 51:4440

    Article  CAS  Google Scholar 

  7. Mock WL, Shih NY (1988) J Am Chem Soc 110:4706

    Article  CAS  Google Scholar 

  8. Mock WL, Shih NY (1989) J Am Chem Soc 111:2697

    Article  CAS  Google Scholar 

  9. Isobe H, Tomita N, Lee JW, Kim HJ, Kim K, Nakamura E (2000) Angew Chem Int Ed 39:4257

    CAS  Google Scholar 

  10. Isobe H, Sota S, Lee JW, Kim HJ, Kim K, Nakamura E (2005) Chem Commun:1549

  11. Tan Y, Choi S, Lee JW, Ko YH, Kim K (2002) Macromolecules 35:7161

    Article  CAS  Google Scholar 

  12. Márquez C, Hudgins RR, Nau WM (2004) J Am Chem Soc 126:5806

    Article  Google Scholar 

  13. Buschmann HJ, Mutihac L, Mutihac RC, Schollmeyer E (2005) Thermochim Acta 430:79

    Article  CAS  Google Scholar 

  14. Buschmann HJ, Schollmeyer E, Mutihac L (2003) Thermochim Acta 399:203

    Article  CAS  Google Scholar 

  15. Miyahara Y, Goto K, Oka M, Inazu T (2004) Angew Chem Int Ed 43:5019

    Article  CAS  Google Scholar 

  16. Li Y, Li L, Zhu Y, Meng X, Wu A (2009) Cryst Growth Des 9:4255

    Article  CAS  Google Scholar 

  17. Buschmann HJ, Zielesny A, Schollmeyer E (2006) J Incl Phenom Macrocyclic Chem 54:181

    Article  CAS  Google Scholar 

  18. Buschmann HJ, Cleve E, Schollmeyer E (2005) Inorg Chem Commun 8:125

    Article  CAS  Google Scholar 

  19. Svec J, Necas M, Sindelar V (2010) Angew Chem Int Ed 49:2378

    CAS  Google Scholar 

  20. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  21. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  22. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Rev. C. 02, Gaussian, Wallingford CT

  23. Kříž J, Dybal J, Makrlík E (2006) Biopolymers 82:536

    Article  Google Scholar 

  24. Kříž J, Dybal J, Makrlík E, Vaňura P, Lang J (2007) Supramol Chem 19:419

    Article  Google Scholar 

  25. Kříž J, Dybal J, Makrlík E, Vaňura P (2008) Supramol Chem 20:387

    Article  Google Scholar 

  26. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2008) Supramol Chem 20:487

    Article  Google Scholar 

  27. Kříž J, Dybal J, Makrlík E, Budka J (2008) J Phys Chem A 112:10236

    Article  Google Scholar 

  28. Kříž J, Dybal J, Makrlík E, Budka J, Vaňura P (2009) J Phys Chem A 113:5896

    Article  Google Scholar 

  29. Kříž J, Toman P, Makrlík E, Budka J, Shukla R, Rathore R (2010) J Phys Chem A 114:5327

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Czech Ministry of Education, Youth, and Sports (projects MSM 4977751303 and MSM 6046137307) and by the Czech Science Foundation (project P205/10/2280). Computer time at the MetaCentrum (project LM 2010005), and at the Institute of Physics (computer Luna/Apollo), Academy of Sciences of the Czech Republic, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuel Makrlík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toman, P., Makrlík, E. & Vaňura, P. Theoretical study on the complexation of bambus[6]uril with the chloride, bromide, and iodide anions. Monatsh Chem 142, 881–884 (2011). https://doi.org/10.1007/s00706-011-0546-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0546-y

Keywords

Navigation