Skip to main content
Log in

Adsorption properties of SCN on (6,0), (7,0), (8,0), and Al-doped (6,0) zigzag single-walled carbon nanotubes: a density functional study

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The behavior of the thiocyanate anion (SCN) adsorbed on the external surface of H-capped (6,0), (7,0), (8,0), and Al-doped (6,0) zigzag single-walled carbon nanotubes was studied by using density functional calculations. Geometry optimizations were carried out at the B3LYP/6-31G* level of theory using the Gaussian 03 suite of programs. We present the nature of the SCN interaction in selected sites of the nanotubes. Our results show that the pristine carbon nanotubes cannot significantly detect SCN. The calculated binding energy of the Al-doped (6,0) single-walled carbon nanotubes indicated that SCN can be adsorbed significantly on the C and Al sites and these nanotubes can therefore be used for SCN storage. Binding energies corresponding to adsorption of SCN on the Al site in the Al-doped (6,0) single-walled carbon nanotubes was calculated as −286.38 kJ mol−1. The calculated binding energies for SCN in N-down orientation are higher than those in S-down orientation for all of the configurations. More efficient binding could not be achieved by increasing the nanotube diameter. We also report the effects of SCN adsorption on the electronic properties of the nanotubes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ijima S (1991) Nature 354:56

    Article  Google Scholar 

  2. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Appl Phys Lett 80:2773

    Article  CAS  Google Scholar 

  3. Liu C, Fan YY, Liu M, Cong HT, Cheng HM, Dresselhaus MS (1999) Science 286:1127

    Article  CAS  Google Scholar 

  4. Zurek B, Autschbach J (2004) J Am Chem Soc 126:13079

    Article  CAS  Google Scholar 

  5. Nojeh A, Lakatos GW, Peng S, Cho K, Pease RFW (2003) Nano Lett 3:1187

    Article  CAS  Google Scholar 

  6. Zhou O, Shimoda H, Gao B, Oh SJ, Fleming L, Yue G (2002) Acc Chem Res 35:1045

    Article  CAS  Google Scholar 

  7. Zhen Y, Postma HWC, Balents L, Dekker C (1999) Nature 402:273

    Article  Google Scholar 

  8. Baughman RH, Cui C, Zakhidov AA, Iqbal Z, Barisci JN, Spinks GM, Wallace GG, Mazzoldi A, Rossi DD, Rinzler AG, Jaschinski O, Roth S, Kertesz M (1999) Science 284:1340

    Article  CAS  Google Scholar 

  9. Gao H, Kong Y, Cui D, Ozkan CS (2003) Nano Lett 3:471

    Article  CAS  Google Scholar 

  10. Rawat DS, Calbi MM, Migone AD (2007) J Phys Chem C 111:12980

    Article  CAS  Google Scholar 

  11. Zhao J, Buldum A, Han J, Lu JP (2002) Nanotechnology 13:195

    Article  CAS  Google Scholar 

  12. Gordillo MC (2007) Phys Rev B 76:115402

    Article  Google Scholar 

  13. Choi YS, Park KA, Kim C, Lee YH (2004) J Am Chem Soc 126:9433

    Article  CAS  Google Scholar 

  14. Byl O, Kondratyuk P, Forth ST, Fitzgerald SA, Chen L, Johnson JK, Yatesjr JT (2003) J Am Chem Soc 125:5889

    Article  CAS  Google Scholar 

  15. Yang X, Lu Y, Ma Y, Liu Z, Du F, Chen Y (2007) Biotech Lett 29:1775

    Article  CAS  Google Scholar 

  16. Gowtham S, Scheicher RH, Ahuja R, Pandey R, Karna S (2007) Phys Rev B 75:033401

    Article  Google Scholar 

  17. Froudakis GE, Schnell M, Muhlhaeser M, Peyerimhoff SD, Andriotis AN, Menon M, Sheetz RM (2003) Phys Rev B 68:115435

    Article  Google Scholar 

  18. Kong J, Franklin NR, Zhou C, Chapline MG, Peng S, Cho K, Dai H (2000) Science 287:622

    Article  CAS  Google Scholar 

  19. Bekyarova E, Davis M, Burch T, Itkis ME, Zhao B, Sunshine S, Haddon RC (2004) J Phys Chem B 108:19717

    Article  CAS  Google Scholar 

  20. Feng X, Irle S, Witek H, Morokuma K, Vidic R, Borguet E (2005) J Am Chem Soc 127:10533

    Article  CAS  Google Scholar 

  21. Li J, Lu Y, Ye Q, Cinke M, Han J, Meyyappan M (2003) Nano Lett 3:929

    Article  CAS  Google Scholar 

  22. Agnihotri S, Mota JPB, Rostam-Abadi M, Rood MJ (2006) J Phys Chem B 110:7640

    Article  CAS  Google Scholar 

  23. Chen RJ, Choi HC, Bangsaruntip S, Yenilmez E, Tang X, Wang Q, Chang YL, Dai H (2004) J Am Chem Soc 126:1563

    Article  CAS  Google Scholar 

  24. Chen RJ, Zhang Y, Wang D, Dai H (2001) J Am Chem Soc 123:3838

    Article  CAS  Google Scholar 

  25. Kam NWS, Dai H (2005) J Am Chem Soc 127:6021

    Article  CAS  Google Scholar 

  26. Peng S, Cho K (2003) Nano Lett 3:513

    Article  CAS  Google Scholar 

  27. Fagan SB, Souza Filho AG, Lima JOG, Mendes Filho J, Ferreira OP, Mazali IO, Alves OL, Dresselhaus MS (2004) Nano Lett 4:1285

    Article  CAS  Google Scholar 

  28. Zhang Y, Zhang D, Liu C (2006) J Phys Chem B 110:4671

    Article  CAS  Google Scholar 

  29. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Science 287:1801

    Article  CAS  Google Scholar 

  30. Fitzgerald M, Bowie JH (2004) J Phys Chem A 108:3668

    Article  CAS  Google Scholar 

  31. Bierbaum VM, Grabowski JJ, DePuy CH (1984) J Phys Chem 88:1389

    Article  CAS  Google Scholar 

  32. Smith D, Spanel P (1995) Mass Spectrom Rev 14:255

    Article  CAS  Google Scholar 

  33. Baei MT, SayyedAlang SZ, Soltani AR, Bahari M, Masoodi A (2011) Monatsh Chem 142:1

    Article  CAS  Google Scholar 

  34. Peng S, Cho K (2003) Nano Lett 3:513

    Article  CAS  Google Scholar 

  35. Kong J, Chapline MG, Dai H (2001) Adv Mater 13:1384

    Article  CAS  Google Scholar 

  36. Wei BY, Hsu MC, Su PG, Lin HM, Wu RJ, Lai HJ (2004) Sens Actuators B 101:81

    Article  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (2003) Gaussian 03, rev. B03. Gaussian, Pittsburgh

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad T. Baei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baei, M.T., Soltani, A.R., Torabi, P. et al. Adsorption properties of SCN on (6,0), (7,0), (8,0), and Al-doped (6,0) zigzag single-walled carbon nanotubes: a density functional study. Monatsh Chem 142, 979–984 (2011). https://doi.org/10.1007/s00706-011-0543-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0543-1

Keywords

Navigation