Skip to main content
Log in

Structure–activity relationship analysis of cationic 2-phenylbenzofurans as potent anti-trypanosomal agents: a multivariate statistical approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

As part of an effort to establish a structure–activity relationship of diamidines against African trypanosomes, a quantitative correlation between molecular structure and anti-trypanosomal activity of 2-phenylbenzofuran derivatives was attained using classical quantitative structure–activity relationship (QSAR) descriptors and 3D similarity indices. A good model was obtained on the basis of classical descriptors; however, the model derived using descriptors based on similarity indices neither complemented the classical descriptors nor were significantly predictive. The best QSAR model with chemical descriptors that showed good correlative and predictive ability with r = 0.91, r 2 = 0.82, and r 2cv  = 0.80 was developed using stepwise multiple linear regression analysis (MLR) and a comparable partial least squares analysis (PLS) model with r 2cv  = 0.79 was also obtained. The QSAR models revealed that a substituent steric descriptor (Verloop B 1 parameter) and geometrical (moment of inertia 3 length) and hydrophobic (log P) descriptors of the whole molecule have significant impact on anti-trypanosomal activity of the compounds. The best QSAR models were validated by the leave one out technique. To further confirm the predictive power of the models, an external set of molecules was used which was not part of the training set. The high agreement betwPLS as shown in Eqeen experimental and predicted inhibitory values, obtained in the validation procedure, indicates the good quality of the derived QSAR models. In addition to QSAR analysis Lipinski’s rule was also applied to the series under consideration and newly designed molecules in order to check the drugability of the compounds; no violation of this rule was found. Hence 2-phenylbenzofuran has tremendous potential to yield orally active anti-trypanosomal agents.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barrett MP (1999) Lancet 353:1113

    Article  CAS  Google Scholar 

  2. WHO Expert Committee (1998) Control and surveillance of African Trypanosomiasis. In: WHO Technical Report Series. World Health Organization, Geneva, vol 881. http://www.who.int; http://www.who.int/tdr

  3. Enanga RJS, Burchmore ML, Barrett MP (2002) Cell Mol Life Sci 59:845

    Article  CAS  Google Scholar 

  4. Welburn SC, Maudlin I (1999) Parasitol Today 15:399

    Article  CAS  Google Scholar 

  5. Barrett MP (2000) Curr Opin Infect Dis 13:647

    Article  CAS  Google Scholar 

  6. Nichols AC, Yielding L, Agbe SAO (2000) J Parasitol 86:177

    CAS  Google Scholar 

  7. Keiser J, Burri C (2000) Acta Tropica 74:101

    Article  CAS  Google Scholar 

  8. Keiser J, Ericsson O, Burri C (2000) Clin Pharmacol Ther 67:478

    Article  CAS  Google Scholar 

  9. Pepin J, Milord F (1994) Adv Parasitol 33:1

    Article  CAS  Google Scholar 

  10. Legros D, Fournier C, Etchegorry MG, Maiso F, Szumilin E (1999) Bull Soc Pathol Exot 92:171

    CAS  Google Scholar 

  11. Legros D, Evans S, Maiso F, Enyaru JCK, Mbulamberi D (1999) Trans R Soc Trop Med Hyg 93:439

    Article  CAS  Google Scholar 

  12. Barrett MP, Fairlamb AH (1999) Parasitol Today 15:136

    Article  CAS  Google Scholar 

  13. Renslo AR, McKerrow JH (2006) Nat Chem Biol 2:701

    Article  CAS  Google Scholar 

  14. Tidwell RR, Boyken DW (2003) In: Demeunynck M, Baelly C (eds) Small molecule DNA and RNA binders: from synthesis to nucleic acid complexes, vol 2. Wiley, Weinheim, p 414

  15. Faerlamb AH (2003) Trends Parasitol 19:488

    Article  Google Scholar 

  16. Bouteille B, Oukem O, Bisser S, Dumas MB (2003) Fundam Clin Pharmacol 17:171

    Article  CAS  Google Scholar 

  17. Singh H, Sivakumar RJ (2004) Infect Chemother 10:307

    Article  Google Scholar 

  18. Jannin J, Cattand P (2004) Curr Opin Infect Dis 17:565

    Article  CAS  Google Scholar 

  19. Donkor IO, Huang TL, Tao B, Rattendi D, Lane S, Vargas M, Goldberg B, Bacchi C (2003) J Med Chem 46:1041

    Article  CAS  Google Scholar 

  20. Wilson WD, Nguyen B, Tanious FA, Mathis A, Hall JE, Stephens CE, Boykin DW (2005) Curr Med Chem 5:389

    CAS  Google Scholar 

  21. Soeiro MNC, De Souza EM, Stephens CE, Boykin DW (2005) Expert Opin Invest Drugs 14:957

    Article  CAS  Google Scholar 

  22. Dykstra CC, McClernon DR, Elwell LP, Tidwell RR (1994) Antimicrob Agents Chemother 38:1890

    CAS  Google Scholar 

  23. Bailly C, Dassonneville L, Carrascol C, Lucasl D, Kumar A, Boykin DW, Wilson WD (1999) Anti Cancer Drug Des 14:47

    CAS  Google Scholar 

  24. Fitzgerald DJ, Anderson JN (1999) J Biol Chem 274:27128

    Article  CAS  Google Scholar 

  25. Henderson D, Hurley LH (1995) Nat Med (NY) 1:525

  26. Paliwal SK, Pal M, Siddiqui AA (2009) Med Chem Res 19:475

    Article  Google Scholar 

  27. Kurup A, Grag R, Carini DJ, Hansch C (2001) Chem Rev 101:2727

    Article  CAS  Google Scholar 

  28. Athri P, Wenzler T, Ruiz P, Brun R, Boykin DW, Tidwell RR, Wilson WD (2006) Bioorg Med Chem 14:3144

    Article  CAS  Google Scholar 

  29. Tropsha A, Cho SJ, Zheng W (1999) “New tricks for an old dog”: development and application of novel QSAR methods for rational design of combinatorial chemical libraries and database mining. In: Parrill AL, Reddy MR (eds) Rational drug design: novel methodology and practical applications, ACS Symposium Series 719. American Chemical Society, Washington, DC, p 198

    Chapter  Google Scholar 

  30. Yao SW, Lopes VHC, Fernández F, García-Mera X, Morales M, Rodríguez-Borges JE, Cordeiroa MNDS (2003) Bioorg Med Chem 11:4999

    Article  CAS  Google Scholar 

  31. Cramer RD (1993) Perspect Drug Discov Des 1:269

    Article  CAS  Google Scholar 

  32. Verloop A, Tipker HW (1976) Development and application of new steric substituent parameters in drug design. In: Ariens EJ (ed) Drug design, vol 7. Academic, New York, p 165

    Google Scholar 

  33. Verloop A, Tipker J (1976) Pestic Sci 7:379

    Article  CAS  Google Scholar 

  34. Verloop A, Tipker JA (1977) Comparative study of new parameters in drug design. In: Keverling BJA (ed) Biological activity and chemical structure. Elsevier, Amsterdam, p 63

    Google Scholar 

  35. Neidle S (2001) Nat Prod Rep 18:291

    Article  CAS  Google Scholar 

  36. Lipinski CA, Lombardo F, Dominy DW, Feeney PJ (2001) Adv Drug Deliv Rev 46:3

    Article  CAS  Google Scholar 

  37. Bakunov SA, Bakunova SM, Wenzler T, Barszcz T, Werbovetz KA, Brun R, Tidwell RR (2008) J Med Chem 51:6927

    Article  CAS  Google Scholar 

  38. Sadowski J, Gasteiger (1993) J Chem Rev 93:2567

  39. Wu W, Walczak B, Massart DL, Heuerding S, Erni F, Last IR, Prebble KA (1996) Chemometr Intell Lab Syst 33:35

    Article  CAS  Google Scholar 

  40. Yasri A, Hartsough DJ (2001) Chem Inf Comput Sci 41:1218

    Article  CAS  Google Scholar 

  41. Burt C, Richards GWJ (1990) Comput Aided Mol Des 4:231

    Article  CAS  Google Scholar 

  42. Carbo R, Leyda L, Arnau M (1980) Int J Quantum Chem 17:1185

    Article  CAS  Google Scholar 

  43. Good AC, So SS, Richards WG (199) J Med Chem 36:433

  44. Good AC, Peterson SJ, Richards WG (1993) J Med Chem 36:2929

    Article  CAS  Google Scholar 

  45. Burt G, Huxley P, Richards WG (1990) J Comput Chem 11:1139

    Article  CAS  Google Scholar 

  46. Kubinyi H, Hamprecht FA, Mietzner T (1998) J Med Chem 41:2553

    Article  CAS  Google Scholar 

  47. Si HZ, Wang T, Zhang KJ, Hu ZD, Fan BT (2006) Bioorg Med Chem 14:4834

    Article  CAS  Google Scholar 

  48. Adams MJ (1995) Chemometrics in analytical spectroscopy. Royal Society of Chemistry, Cambridge

    Google Scholar 

  49. Nosov VN (1990) Computational biometrics. Moscow University Press, Moscow (in Russian)

    Google Scholar 

  50. Rameshwar N, Krishna K, Ashok KB, Parthasarathy T (2006) Bioorg Med Chem 14:319

    Article  CAS  Google Scholar 

  51. Kim D, Hong S, Lee D (2006) Int J Mol Sci 7:485

    Article  CAS  Google Scholar 

  52. Golbraikh A, Tropsha A (2002) J Mol Graphics Model 20:269

    Article  CAS  Google Scholar 

  53. Tropsha A, Gramatica P, Gombar VK (2003) QSAR Comb Sci 22:69

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors pay sincere thanks to Prof. Aditya Shastri, Vice Chancellor, Banasthali University, Rajasthan, India for providing necessary computational facilities for the completion of the study in a convenient manner.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarvesh Kumar Paliwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paliwal, S.K., Verma, A.N. & Paliwal, S. Structure–activity relationship analysis of cationic 2-phenylbenzofurans as potent anti-trypanosomal agents: a multivariate statistical approach. Monatsh Chem 142, 1069–1086 (2011). https://doi.org/10.1007/s00706-011-0509-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0509-3

Keywords

Navigation