Skip to main content
Log in

Aqueous solubility calculation of aromatic acids within a wide temperature range using a modified regular solution model

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The modified RSFH model, based on the regular solution theory coupled with the Flory-Huggins entropy term, was extended to calculate the solubility of aromatic acids in water within wide temperature ranges. The aqueous solubility data on aromatic acids from the published literature were assembled and validated. A total of 1,009 aqueous solubility data points for 25 aromatic acids within the temperature range of 273–463 K were selected for modeling. The calculation results showed that the solubility of aromatic acids in water could be well represented by the proposed four-parameter solution model within a wide temperature range. The overall absolute average deviation (δ AAD) is 6.76%. The estimated cohesive energies of the aromatic acids were found to be about 20–30 kJ mol−1. For the majority of the aromatic acids investigated, the cohesive energy could be considered as a constant. Strong temperature dependency, however, was also observed for a few aromatic acids, and misleading results may be obtained if this dependency is neglected. The model also has a certain prediction ability and could be extrapolated to a high temperature range where no experimental solubility data are available.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mullin JW (2001) Crystallization, 4th edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  2. Ding Z, Zhang R, Long B, Liu L, Tu H (2010) Fluid Phase Equilib 292:96

    Article  CAS  Google Scholar 

  3. Long B, Li J, Zhang R, Wan L (2010) Fluid Phase Equilib 297:113

    Article  CAS  Google Scholar 

  4. Prausnitz JM, Lichtenthaler RN, Gomes de Azevedo E (1998) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall PTR, Indianapolis

    Google Scholar 

  5. Walas SM (1985) Phase equilibria in chemical engineering. Buttersworth, New York

    Google Scholar 

  6. Hildebrand JH, Scott RL (1962) Regular solutions. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  7. Null JR, Palmer DA (1969) Chem Eng Progr 65:47

    CAS  Google Scholar 

  8. Hansen CM (1967) J Paint Technol 39:104

    CAS  Google Scholar 

  9. Hildebrand JH (1979) Proc Natl Acad Sci USA 76:6040

    Article  CAS  Google Scholar 

  10. Flory PJ (1941) J Chem Phys 9:660

    Article  CAS  Google Scholar 

  11. Huggins ML (1941) J Chem Phys 9:440

    Article  CAS  Google Scholar 

  12. Shin HY, Matsumoto K, Higashi H, Iwai Y, Arai Y (2001) J Supercrit Fluids 21:105

    Article  CAS  Google Scholar 

  13. Higashi H, Iwai Y, Matsumoto K, Kitani Y, Okazaki F, Shimoyama Y, Arai Y (2005) Fluid Phase Equilib 228:547

    Article  Google Scholar 

  14. Long B, Wang Y, Zhao D, Yang Z (2007) J Beijing Univ Chem Technol 34:126

    CAS  Google Scholar 

  15. Budavari S (1996) The Merck Index: an encyclopedia of chemicals, drugs, and biologicals, 12th edn. Merck Co. Inc., Whitehouse Station

    Google Scholar 

  16. Long B, Yang Z (2008) Fluid Phase Equilib 226:38

    Article  Google Scholar 

  17. Long B, Wang Y, Zhang R, Xu J (2009) J Chem Eng Data 54:1764

    Article  CAS  Google Scholar 

  18. Stephen H, Stephen T (1963) Solubilities of inorganic and organic compounds, vol 1 (part 1). Pergamon Press, Oxford

    Google Scholar 

  19. Yalkovsky S, He Y (2003) Handbook of aqueous solubility data. CRC Press, Boca Raton

    Book  Google Scholar 

  20. Apelblat A, Manzurola E, Balal NA (2006) J Chem Thermodyn 38:565

    Article  CAS  Google Scholar 

  21. Zhang Z, Frenkel M, Marsh KN, Wilhoit RC (1995) Enthalpies of fusion and transition of organic compounds, Landolt–Börnstein, group IV—physical chemistry, vol 8, subvol A. Springer-Verlag, Berlin

    Google Scholar 

  22. Marrero J, Gani R (2001) Fluid Phase Equilib 183:183

    Article  Google Scholar 

  23. Sagara H, Arai Y, Saito S (1975) J Chem Eng Japan 8:93

    Article  CAS  Google Scholar 

  24. Yaws CL (1999) Chemical properties handbook. McGraw-Hill Book Co, New York

    Google Scholar 

  25. Iwai Y, Koga Y, Fukuda T, Arai Y (1992) J Chem Eng Japan 25:757

    Article  CAS  Google Scholar 

  26. Mariana BO, Vera LO, Coutinho JP (2009) Ind Eng Chem Res 48:5530

    Article  Google Scholar 

  27. Li D, Liu J, Liu D, Wang F (2002) Fluid Phase Equilib 200:69

    Article  CAS  Google Scholar 

  28. Yukhno GF, Bikkulov AZ (1971) Solubility of benzenecarboxylic acids in water. Ufimskii Neftyanoi Institute, Trudy

    Google Scholar 

  29. Strong LE, Neff RM, Whitesel I (1989) J Solut Chem 18:101

    Article  CAS  Google Scholar 

  30. Zhu JQ, Ma PS, Zhou H (2006) Fluid Phase Equilib 250:165

    Article  Google Scholar 

  31. Apelblat A, Manzurola E (1989) J Chem Thermodyn 21:1005

    Article  CAS  Google Scholar 

  32. Han NY, Wang LS, Fu RN (1999) Sep Purif Technol 16:175

    Article  CAS  Google Scholar 

  33. Sun JM (1982) Polyester technology. Chemical Industry Press, Beijing

    Google Scholar 

  34. Long B, Wang L, Wu J (2005) J Chem Eng Data 50:136

    Article  CAS  Google Scholar 

  35. Zhao H, Li R, Ji H, Zhang D, Tang C, Yang L (2007) J Chem Eng Data 52:2072

    Article  CAS  Google Scholar 

  36. Li D, Liu D, Wang F (2001) J Chem Ind Eng Soc China 52:541

    CAS  Google Scholar 

  37. Li D, Liu D, Wang F (2001) J Chem Eng Data 46:234

    Article  CAS  Google Scholar 

  38. Apelblat A, Manzurola E (2002) J Chem Thermodyn 34:1127

    Article  Google Scholar 

  39. Mishelevich A, Apelblat A (2008) J Chem Thermodyn 40:897

    Article  CAS  Google Scholar 

  40. Nordstrom F, Rasmuson A (2006) J Chem Eng Data 51:1668

    Article  Google Scholar 

  41. Nordstrom F, Rasmuson A (2006) Eur J Pharm Sci 28:377

    Article  Google Scholar 

  42. Barton AFM (1991) Handbook of solubility parameters and other cohesion parameters, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  43. Hansen C (2007) Hansen solubility parameters: a user’s handbook, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  44. Fedors RF (1974) Polym Eng Sci 14:147

    Article  CAS  Google Scholar 

  45. Gamsjäger H, Lorimer JW, Scharlin P, Shaw DG (2008) Pure Appl Chem 82:233

    Article  Google Scholar 

Download references

Acknowledgments

Ms. Lyenna Wood and Prof. John M. Shaw (University of Alberta) are greatly acknowledged for their invaluable contributions during the preparation of this paper. The author also thanks Prof. A. Apelblat (Ben Gurion University of the Negev) for providing some literature data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bingwen Long.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Long, B. Aqueous solubility calculation of aromatic acids within a wide temperature range using a modified regular solution model. Monatsh Chem 142, 453–461 (2011). https://doi.org/10.1007/s00706-011-0477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0477-7

Keywords

Navigation