Beta-amyloid toxicity increases with hydrophobicity in the presence of metal ions

Abstract

Alzheimer’s disease is a multifactorial neurodegenerative disorder characterized by the pathological brain deposition of neurofibrillary tangles and senile plaques. The latter consist mainly of insoluble β-amyloid (Aβ) fibril deposition. Aβ aggregation and deposition can be increased by several factors, including metal ions. In this study we investigated the role played by metal ions in affecting Aβ oligomerization in the presence and in the absence of its hydrophobic fragment Aβ17–28. This was done not as a physiological investigation, but as a paradigmatic study to confirm the key role of Aβ superficial hydrophobicity as a relevant aggravating factor that contributes to the toxicity of Aβ and Aβ–metal complexes. The structural conformations of Aβ–metal complexes were monitored through fluorescence and turbidity measurements as well as transmission electron microscopy. Results reported herein indicate that various metals differentially influence Aβ conformation, with aluminum being the only metal ion for which we are able to determine a dramatic enhancement of peptide oligomer formation with a consequent toxic effect. This scenario was further enhanced by the presence of Aβ17–28, which resulted in a marked toxicity in a neuroblastoma cell culture as a consequence of the enhancement of the hydrophobicity of the amyloid and amyloid–metal complexes.

Graphical abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Iqbal K, Liu F, Gong CX, Alonso AD, Grundke-Iqbal I (2009) Acta Neuropathol 118:53

    Article  CAS  Google Scholar 

  2. 2.

    Ono K, Condron MM, Teplow DB (2009) Proc Natl Acad Sci USA 106:14745

    Article  CAS  Google Scholar 

  3. 3.

    Savva GM, Wharton SB, Ince PG, Forster G, Matthews FE, Brayne C (2009) N Engl J Med 360:2302

    Article  CAS  Google Scholar 

  4. 4.

    Nygaard HB, Strittmatter SM (2009) AMA Arch Neurol 66:1325

    Article  Google Scholar 

  5. 5.

    Zatta P, Drago D, Bolognin S, Sensi SL (2009) Trends Pharmacol Sci 30:346

    Google Scholar 

  6. 6.

    Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) J Neurol Sci 158:47

    Article  CAS  Google Scholar 

  7. 7.

    Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) J Struct Biol 155:30

    Article  CAS  Google Scholar 

  8. 8.

    Leskovjan AC, Lanzirotti A, Miller LM (2009) Neuroimage 47:1215

    Article  Google Scholar 

  9. 9.

    Zbilut JP, Webber CL, Colosimo A, Giuliani A (2000) Protein Eng 13:99

    Article  CAS  Google Scholar 

  10. 10.

    Kim W, Hecht MH (2006) Proc Natl Acad Sci USA 103:15824

    Article  CAS  Google Scholar 

  11. 11.

    Dahlgren KN, Manelli AM, Stine WB, Baker LK, Krafft GA, LaDu MJ (2002) J Biol Chem 277:32046

    Article  CAS  Google Scholar 

  12. 12.

    Drago D, Folin M, Baiguera S, Tognon G, Ricchelli F, Zatta P (2007) J Alzheimers Dis 11:33

    CAS  Google Scholar 

  13. 13.

    Shearman MS, Hawtin SR, Tailor VJ (1995) J Neurochem 65:218

    Article  CAS  Google Scholar 

  14. 14.

    Maezawa I, Hong HS, Liu R, Wu CY, Cheng RH, Kung MP, Kung HF, Lam KS, Oddo S, LaFerla FM, Jin LW (2008) J Neurochem 104:457

    CAS  Google Scholar 

  15. 15.

    Ferreira ST, Vieira MNN, De Felice FG (2007) IUBMB Life 59:332

    Article  CAS  Google Scholar 

  16. 16.

    Naiki H, Gejyo F, Nakakuki K (1997) Biochemistry 36:6243

    Article  CAS  Google Scholar 

  17. 17.

    Uversky VN, Winter S, Lober G (1996) Biophys Chem 60:79

    Article  CAS  Google Scholar 

  18. 18.

    Drago D, Bolognin S, Zatta P (2008) Curr Alzheimer Res 5:500

    Article  CAS  Google Scholar 

  19. 19.

    Friedman R, Pellarin R, Caflisch A (2009) J Mol Biol 387:407

    Article  CAS  Google Scholar 

  20. 20.

    Suwalsky M, Bolognin S, Zatta P (2009) J Alzheimers Dis 17:81

    CAS  Google Scholar 

  21. 21.

    Yankner BA, Lu T (2009) J Biol Chem 284:4754

    Google Scholar 

  22. 22.

    Kopito RR, Ron D (2000) Nat Cell Biol 2:E207

    Article  CAS  Google Scholar 

  23. 23.

    Drago D, Bettella M, Bolognin S, Cendron L, Scancar J, Milacic R, Ricchelli F, Casini A, Messori L, Tognon G, Zatta P (2008) Int J Biochem Cell B 40:731

    Article  CAS  Google Scholar 

  24. 24.

    Millucci L, Ghezzi L, Bernardini G, Santucci A (2010) Curr Protein Pep Sc 11:457

    Google Scholar 

  25. 25.

    Atamna H (2009) J Bioenerg Biomembr 41:457

    Article  CAS  Google Scholar 

  26. 26.

    Tjernberg LO, Callaway DJE, Tjernberg A, Hahne S, Lilliehook C, Terenius L, Thyberg J, Nordstedt C (1999) J Biol Chem 274:12619

    Article  CAS  Google Scholar 

  27. 27.

    Melquiond A, Dong X, Mousseau N, Derreumaux P (2008) Curr Alzheimer Res 5:244

    Article  CAS  Google Scholar 

  28. 28.

    Levine H (1993) Protein Sci 2:404

    Article  CAS  Google Scholar 

  29. 29.

    Xue WF, Hellewell AL, Gosal WS, Homans SW, Hewitt EW, Radford SE (2009) J Biol Chem 284:34272

    Article  CAS  Google Scholar 

  30. 30.

    Zhang A, Qi W, Good TA, Fernandez EJ (2009) Biophys J 96:1091

    Article  CAS  Google Scholar 

  31. 31.

    Shah SB, Nolan R, Davis E, Stokin GB, Niesman I, Canto I, Glabe C, Goldstein LSB (2009) Neurobiol Dis 36:11

    Article  CAS  Google Scholar 

  32. 32.

    Deshpande A, Mina E, Glabe C, Busciglio J (2006) J Neurosci 26:6011

    Article  CAS  Google Scholar 

  33. 33.

    Behl C, Davis JB, Lesley R, Schubert D (1994) Cell 77:817

    Article  CAS  Google Scholar 

  34. 34.

    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan JY (2000) Nature 403:98

    Article  CAS  Google Scholar 

  35. 35.

    Kremer JJ, Pallitto MM, Sklansky DJ, Murphy RM (2000) Biochemistry 39:10309

    Article  CAS  Google Scholar 

  36. 36.

    Lashuel HA, Hartley D, Petre BM, Walz T, Lansbury PT (2002) Nature 418:291

    Article  CAS  Google Scholar 

  37. 37.

    Eckert GP, Wood WG, Muller WE (2005) Subcell Biochem 38:319

    Article  CAS  Google Scholar 

  38. 38.

    Miller Y, Ma B, Nussinov R (2010) Chem Rev 110:4820

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by PRIN 2007.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Paolo Zatta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Granzotto, A., Bolognin, S., Scancar, J. et al. Beta-amyloid toxicity increases with hydrophobicity in the presence of metal ions. Monatsh Chem 142, 421–430 (2011). https://doi.org/10.1007/s00706-011-0470-1

Download citation

Keywords

  • Amyloid-beta
  • Aluminum
  • Alzheimer’s disease
  • Metal ions
  • Hydrophobicity