Skip to main content
Log in

Multi-walled carbon nanotubes as electrode materials for electrochemical studies of organometallic compounds in organic solvent media

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Films of vertically aligned multi-walled carbon nanotubes (MWCNT) were selectively synthesized on silicon dioxide substrate by catalytic chemical vapor deposition using either benzene or acetonitrile as carbon source and ferrocene (1% w/w) as catalyst. The MWCNT were extensively characterized by using scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and Raman spectroscopy. In order to examine the prospective application of the fabricated MWCNT films for the detection of electro-active compounds in organic solvent media, electrochemical studies of the oxidation of cobaltocene (CoCp2) to cobaltocenium cation (CoCp +2 ) (Cp = cyclopentadienyl anion) in acetonitrile were performed on these films. For this purpose, cyclic voltammetry and electrochemical impedance spectroscopy were employed. The electrochemical parameters for the CoCp +/02 couple in acetonitrile were derived and compared with those obtained using a conventional glassy carbon electrode. The results demonstrate that the synthesized MWCNT films are promising electrode materials for the electrochemical detection of electro-active species in organic solvents. The MWCNT film formed upon decay of benzene has higher capacitance, less Warburg impedance, and less charge transfer resistance, and consequently it provides faster electron transfer kinetics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Radushkevich LV, Lukyanovich VM (1952) Zurn Fisic Chim 26:88

    CAS  Google Scholar 

  2. Wiles PG, Abrahamson J (1978) Carbon 16:341

    Article  CAS  Google Scholar 

  3. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  4. Merkoci A (2006) Microchim Acta 152:157

    Article  CAS  Google Scholar 

  5. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chem Rev 106:1105

    Article  CAS  Google Scholar 

  6. Zheng LX, O’Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, Peterson DE, Huan SM, Liu J, Zhu YT (2004) Nat Mater 3:673

    Article  CAS  Google Scholar 

  7. Inoue T, Gunjishima I, Okamoto A (2007) Carbon 45:2164

    Article  CAS  Google Scholar 

  8. Banks CE, Compton RG (2006) Analyst 131:15

    Article  CAS  Google Scholar 

  9. Gommes C, Blacher S, Bossuot C, Marchot P, Nagy JB, Pirard JP (2004) Carbon 42:1473

    Article  CAS  Google Scholar 

  10. Cantoro M, Hofmann S, Pisana S, Scardaci V, Parvez A, Ducati C, Ferrari AC, Blackburn AM, Wang KY, Robertson J (2006) Nano Lett 6:1107

    Article  CAS  Google Scholar 

  11. Bladh K, Falk LKL, Rohmund F (2000) Appl Phys A Mater Sci Process 70:317

    Article  CAS  Google Scholar 

  12. Gooding JJ (2005) Electrochim Acta 50:3049

    Article  CAS  Google Scholar 

  13. Wang J (2005) Electroanalysis 17:7

    Article  CAS  Google Scholar 

  14. Campbell JK, Sun L, Crooks RM (1999) J Am Chem Soc 121:3779

    Article  CAS  Google Scholar 

  15. Deo RP, Wang J (2004) Electrochem Commun 6:284

    Article  CAS  Google Scholar 

  16. Musameh M, Wang J, Merkoci A, Lin Y (2002) Electrochem Commun 4:743

    Article  CAS  Google Scholar 

  17. Ye JS, Wen Y, Zhang WD, Gan LM, Xu GQ, Sheu FS (2003) Electroanalysis 15:1693

    Article  CAS  Google Scholar 

  18. Wang J, Li M, Shi Z, Li N, Gu Z (2002) Anal Chem 74:1993

    Article  CAS  Google Scholar 

  19. Salimi A, Hallaj R, Khayatian GR (2005) Electroanalysis 17:873

    Article  CAS  Google Scholar 

  20. Punbusayakul N, Talapatra S, Ci L, Surareungchai W, Ajayan PM (2007) Electrochem Solid-State Lett 10:13

    Article  Google Scholar 

  21. Tsierkezos NG (2008) J Mol Liq 138:1

    Article  CAS  Google Scholar 

  22. Dresselhaus MS, Dresselhaus G, Saito R, Joiro A (2005) Phys Rep 409:47

    Article  Google Scholar 

  23. Popov VN, Henrard L, Lambin P (2009) Carbon 47:2448

    Article  CAS  Google Scholar 

  24. Ferrari AC, Robertson J (2000) Phys Rev B Condens Matter Mater Phys 61:14095

    Article  CAS  Google Scholar 

  25. Bard AJ, Garcia E, Kukharenko S, Strelets VV (1993) Inorg Chem 32:3528

    Article  CAS  Google Scholar 

  26. Connelly NG, Geiger WE (1996) Chem Rev 96:877

    Article  CAS  Google Scholar 

  27. Geiger WE (1974) J Am Chem Soc 96:2632

    Article  CAS  Google Scholar 

  28. Stojanovic RS, Bond AM (1993) Anal Chem 65:56

    Article  CAS  Google Scholar 

  29. Koelle U (1978) J Organomet Chem 152:225

    Article  CAS  Google Scholar 

  30. Santucci R, Faraoni A, Campanella L, Tranchida G, Brunori M (1991) Biochem J 273:783

    CAS  Google Scholar 

  31. Nicholson RS (1965) Anal Chem 37:1351

    Article  CAS  Google Scholar 

  32. Yu J, Flavel BS, Shapter JG (2008) Fuller Nanotub Carbon Nanostruct 16:18

    Article  CAS  Google Scholar 

  33. Noel M, Suryanarayanan V, Santhanam R (2000) Electroanalysis 12:1039

    Article  CAS  Google Scholar 

  34. Rodriguez Nieto JF, Tucceri RI, Posadas D (1996) J Electroanal Chem 403:241

    Article  Google Scholar 

  35. Macdonald JR (1987) Impedance spectroscopy: emphasizing solid materials and systems. Wiley, New York

    Google Scholar 

  36. Mohran HS (2005) Am J Appl Sci 2:1629

    Article  CAS  Google Scholar 

  37. Djellal L, Bouguelia A, Trari M (2008) Semicond Sci Technol 23:45019

    Article  Google Scholar 

  38. Bardea A, Patolsky F, Dagan A, Willner I (1999) Chem Commun 21

  39. Esplandiu MJ, Pacios M, Bellido E, Del Valle M (2007) Z Phys Chem 221:1161

    CAS  Google Scholar 

  40. Barbero C, Tucceri RI, Posadas D, Silber JJ, Sereno L (1995) Electrochim Acta 40:1037

    Article  CAS  Google Scholar 

  41. Randles JEB (1948) Trans Faraday Soc 44:327

    Article  CAS  Google Scholar 

  42. Vetter KJ (1967) Electrochemical kinetics. Academic, New York

    Google Scholar 

  43. Omeiri S, Bellal B, Bouguelia A, Bessekhouad Y, Trari M (2009) J Solid State Electrochem 13:1395

    Article  CAS  Google Scholar 

  44. Koeleli F, Roepke T, Hamann CH (2003) Electrochim Acta 48:1596

    Google Scholar 

  45. Yu J, Li J, Zhao F, Zeng B (2008) J Braz Chem Soc 19:849

    Article  CAS  Google Scholar 

  46. Bard AJ, Faulkner LR (1980) Electrochemical methods. Wiley, New York

    Google Scholar 

  47. Sundfors F, Bobacka J, Ivaska A, Lewenstam A (2002) Electrochim Acta 47:2245

    Article  CAS  Google Scholar 

  48. Suresh P, Shukla AK, Munichandraiah N (2002) J Appl Electrochem 32:267

    Article  CAS  Google Scholar 

  49. Rao CNR, Sen R, Satishkumar BC, Govindaraj A (1998) Chem Commun 1525

  50. Satishkumar BC, Govindaraj A, Rao CNR (1999) Chem Phys Lett 307:158

    Article  CAS  Google Scholar 

  51. Weber L, Kloeckner K, Ritter U, Scharff P (2009) Russ J Electrochem 45:1145

    Article  CAS  Google Scholar 

  52. Aoki K, Kaneko H, Nozaki K (1988) J Electroanal Chem 247:29

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank D. Schneider, S. Heusing, and C. Siegmund (TU Ilmenau).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos G. Tsierkezos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsierkezos, N.G., Szroeder, P. & Ritter, U. Multi-walled carbon nanotubes as electrode materials for electrochemical studies of organometallic compounds in organic solvent media. Monatsh Chem 142, 233–242 (2011). https://doi.org/10.1007/s00706-011-0454-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-011-0454-1

Keywords

Navigation