Skip to main content

Advertisement

Log in

Density functional theory as a guide for the design of pyran dyes for dye-sensitized solar cells

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Using density functional theory and hybrids, we examined several derivatives of the dye 4-(dicyanomethylene)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran, with the objective of identifying modifications which would improve the properties of dyes for dye-sensitized solar cells. We calculated the electronic structure of numerous derivatives at the HOMO and LUMO energy levels, with the hypothesis that directing the flow of excited electrons to the point of the dye at which the molecule attaches to TiO2 would increase the energy conversion efficiency of the cell. We also examined the UV–visible absorption spectra of the dyes, with the objective of capturing the maximum amount of solar light. By use of the derivatives we compared the use of two electron-donating groups instead of one, extension of the conjugated chain leading to the attachment point of the dye, use of oxygen versus sulfur or selenium in the dye, and the use of different electron-donating groups. We identified several promising donating groups and determined that the other modifications to the dye are likely to increase solar cell efficiency.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Regan B, Graetzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Grätzel M (2004) J Photochem Photobiol A 164:3

    Article  Google Scholar 

  3. Hara K, Arakawa H (2003) Dye-sensitized solar cells. In: Luque A, Hegedus S (eds) Handbook of photovoltaic science and engineering. Wiley, New York

  4. Kroon JM, Bakker NJ, Smit HJP, Liska P, Thampi KR, Wang P, Zakeeruddin SM, Grätzel M, Hinsch A, Hore S, Würfel U, Sastrawan R, Durrant JR, Palomares E, Pettersson H, Gruszecki T, Walter J, Skupien K, Tulloch GE (2007) Prog Photovolt Res Appl 15:1

    Article  CAS  Google Scholar 

  5. Xie P, Guo F (2007) Curr Org Chem 11:1272

    Article  CAS  Google Scholar 

  6. Chen Z, Li F, Huang C (2007) Curr Org Chem 11:1241

    Article  CAS  Google Scholar 

  7. Wang ZS, Hara K, Danoh Y, Kasada C, Shinpo A, Suga S, Arakawa H, Sugihara H (2005) J Phys Chem B 109:3907

    Article  CAS  Google Scholar 

  8. Wang ZS, Cui Y, Hara K, Dan-oh Y, Kasada C, Shinpo A (2007) Adv Mater 19:1138

    Article  CAS  Google Scholar 

  9. Alex S, Santhosh U, Das S (2005) J Photochem Photobiol A 172:63

    Article  CAS  Google Scholar 

  10. Burke A, Schmidt-Mende L, Ito S, Gratzel M (2007) Chem Commun 234

  11. Howie WH, Claeyssens F, Miura H, Peter Laurence M (2008) J Am Chem Soc 130:1367

    Article  CAS  Google Scholar 

  12. Horiuchi T, Miura H, Sumioka K, Uchida S (2004) J Am Chem Soc 126:12218

    Article  CAS  Google Scholar 

  13. Campbell WM, Burrell AK, Officer DL, Jolley KW (2004) Coord Chem Rev 248:1363

    Article  CAS  Google Scholar 

  14. Walsh PJ, Gordon KC, Officer DL, Campbell WM (2006) J Mol Struct (THEOCHEM) 759:17

    Google Scholar 

  15. Vyas S, Hadad CM, Modarelli DA (2008) J Phys Chem A 112:6533

    Article  CAS  Google Scholar 

  16. Balanay MP, Kim DH (2008) Phys Chem Chem Phys 10:5121

    Article  CAS  Google Scholar 

  17. Liu T, Zhang HX, Zhou X, Xia BH (2008) Eur J Inorg Chem 2008:1268

    Article  Google Scholar 

  18. Liu Z (2008) J Mol Struct (THEOCHEM) 862:44

    Article  CAS  Google Scholar 

  19. Balanay MP, Kim DH (2009) J Mol Struct (THEOCHEM) 910:20

    Article  CAS  Google Scholar 

  20. Mann JR, Gannon MK, Fitzgibbons TC, Detty MR, Watson DF (2008) J Phys Chem C 112:13057

    Article  CAS  Google Scholar 

  21. Nueesch F, Zuppiroli L, Berner D, Ma C, Wang X, Cao Y, Zhang B (2004) Res Chem Intermed 30:495

    Article  CAS  Google Scholar 

  22. Detty MR, Merkel PB (1990) J Am Chem Soc 112:3845

    Article  CAS  Google Scholar 

  23. Mautner HG, Clayton EM (1959) J Am Chem Soc 81:6270

    Article  CAS  Google Scholar 

  24. Ohulchanskyy TY, Donnelly DJ, Detty MR, Prasad PN (2004) J Phys Chem B 108:8668

    Article  CAS  Google Scholar 

  25. Darling SB (2008) J Phys Chem B 112:8891

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation/EPSCoR Grant No. 0554609 and by the State of South Dakota. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This material is based on work supported by the NASA South Dakota Space Grant Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngjae You.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, C., Darling, S.B. & You, Y. Density functional theory as a guide for the design of pyran dyes for dye-sensitized solar cells. Monatsh Chem 142, 45–52 (2011). https://doi.org/10.1007/s00706-010-0424-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0424-z

Keywords

Navigation