Skip to main content

Advertisement

Log in

Exploring the molecular basis for selective cytotoxicity of lamellarins against human hormone-dependent T47D and hormone-independent MDA-MB-231 breast cancer cells

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The common structural requirements for cytotoxicity of lamellarins against two human breast cancer cell lines were determined using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. Twenty lamellarins were selected to serve as the training set, whereas another group of six compounds were used as the test set. The best CoMFA and CoMSIA models for both cell lines yielded satisfactory predictive ability with r 2cv values in the range of 0.659–0.728. Additionally, the contour maps obtained from both the CoMFA and CoMSIA models agreed well with the experimental results and may be used in the design of more potent cytotoxic compounds for human breast cancers. Both analyses not only suggested structural requirements of various substituents around the lamellarin skeleton for their cytotoxic activity against both human breast cancer cell lines but also revealed the molecular basis for the differences between the saturated and unsaturated D-rings of the lamellarins.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Andersen RJ, Faulkner DJ, He CH, Van Duyne GD, Clardy J (1985) J Am Chem Soc 107:5492

    Article  CAS  Google Scholar 

  2. Carroll AR, Bowden BF, Coll JC (1993) Aust J Chem 46:489

    Article  CAS  Google Scholar 

  3. Davis RA, Carroll AR, Pierens GK, Quinn RJ (1999) J Nat Prod 62:419

    Article  CAS  Google Scholar 

  4. Ham J, Kang H (2002) Bull Korean Chem Soc 23:163

    Article  CAS  Google Scholar 

  5. Krishnaiah P, Reddy VLN, Venkataramana G, Ravinder K, Srinivasulu M, Raju TV, Ravikumar K, Chandrasekar D, Ramakrishna S, Venkateswarlu Y (2004) J Nat Prod 67:1168

    Article  CAS  Google Scholar 

  6. Lindquist N, Fenical W, Van Duyne GD, Clardy J (1988) J Org Chem 53:4570

    Article  CAS  Google Scholar 

  7. Reddy MVR, Faulkner DJ, Venkateswarlu Y, Rao MR (1997) Tetrahedron 53:3457

    Article  CAS  Google Scholar 

  8. Reddy SM, Srinivasulu M, Satyanarayana N, Kondapi AK, Venkateswarlu Y (2005) Tetrahedron 61:9242

    Article  CAS  Google Scholar 

  9. Urban S, Butler MS, Capon RJ (1994) Aust J Chem 47:1919

    Article  CAS  Google Scholar 

  10. Urban S, Capon RJ (1996) Aust J Chem 49:711

    CAS  Google Scholar 

  11. Urban S, Hobbs L, Hooper JNA, Capon RJ (1995) Aust J Chem 48:1491

    Article  CAS  Google Scholar 

  12. Reddy MVR, Rao MR, Rhodes D, Hansen MST, Rubins K, Bushman FD, Venkateswarlu Y, Faulkner DJ (1999) J Med Chem 42:901

    Google Scholar 

  13. Ridley CP, Reddy MVR, Rocha G, Bushman FD, Faulkner DJ (2002) Bioorg Med Chem 10:3285

    Article  CAS  Google Scholar 

  14. Fan H, Peng J, Hamann MT, Hu JF (2008) Chem Rev 108:264

    Article  CAS  Google Scholar 

  15. Facompre M, Tardy C, Bal-Mahieu C, Colson P, Perez C, Manzanares I, Cuevas C, Bailly C (2003) Cancer Res 63:7392

    CAS  Google Scholar 

  16. Vanhuyse M, Kluza J, Tardy C, Otero G, Cuevas C, Bailly C, Lansiaux A (2005) Cancer Lett 221:165

    Article  CAS  Google Scholar 

  17. Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) J Natl Cancer Inst 92:1042

    Article  CAS  Google Scholar 

  18. Debatin KM, Poncet D, Kroemer G (2002) Oncogene 21:8786

    Article  CAS  Google Scholar 

  19. Dias N, Bailly C (2005) Biochem Pharmacol 70:1

    Article  CAS  Google Scholar 

  20. Kluza J, Gallego MA, Loyens A, Beauvillain JC, Sousa-Faro JMF, Cuevas C, Marchetti P, Bailly C (2006) Cancer Res 66:3177

    Article  CAS  Google Scholar 

  21. Mayer AMS, Gustafson KR (2008) Eur J Cancer 44:2357

    Article  CAS  Google Scholar 

  22. Baunbaek D, Trinkler N, Ferandin Y, Lozach O, Ploypradith P, Rucirawat S, Ishibashi F, Iwao M, Meijer L (2008) Mar Drugs 6:514

    Article  CAS  Google Scholar 

  23. Quesada AR, Garcia Gravalos MD, Fernandez Puentes JL (1996) Br J Cancer 74:677

    CAS  Google Scholar 

  24. Bailly C (2004) Curr Med Chem Anticancer Agents 4:363

    Article  CAS  Google Scholar 

  25. Ishibashi F, Tanabe S, Oda T, Iwao M (2002) J Nat Prod 65:500

    Article  CAS  Google Scholar 

  26. Marco E, Laine W, Tardy C, Lansiaux A, Iwao M, Ishibashi F, Bailly C, Gago F (2005) J Med Chem 48:3796

    Article  CAS  Google Scholar 

  27. Chittchang M, Batsomboon P, Ruchirawat S, Ploypradith P (2009) ChemMedChem 4:457

    Article  CAS  Google Scholar 

  28. Thipnate P, Liu J, Hannongua S, Hopfinger AJ (2009) J Chem Inf Model 49:2312

    Article  CAS  Google Scholar 

  29. Ploypradith P, Petchmanee T, Sahakitpichan P, Litvinas ND, Ruchirawat S (2006) J Org Chem 71:9440

    Article  CAS  Google Scholar 

  30. Bohm M, Sturzebecher J, Klebe G (1999) J Med Chem 42:458

    Article  CAS  Google Scholar 

  31. Cramer RD III, Patterson DE, Bunce JD (1988) J Am Chem Soc 110:5959

    Article  CAS  Google Scholar 

  32. Klebe G, Abraham U, Mietzner T (1994) J Med Chem 37:4130

    Article  CAS  Google Scholar 

  33. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03. Gaussian Inc., Wallingford

    Google Scholar 

Download references

Acknowledgments

This work would not have been possible without generous support from the Chulabhorn Research Institute (CRI), the Chulabhorn Graduate Institute (CGI), Phetchaburi Rajabhat University (PBRU), the Kasetsart University (KU) Graduate School, and the Commission on Higher Education (CHE). The Thailand Research Fund (TRF) is gratefully acknowledged for research grants (RTA5080005 to S.H., BRG5180013 to P.P., RMU4980048 to N.T., and DBG5180015 to M.C.). Moreover, the authors would like to thank the National Center of Excellence in Petroleum, Petrochemicals, and Advanced Materials, KU Research and Development Institute (KURDI), Laboratory for Computational and Applied Chemistry (LCAC) and the computing centre of KU, the Center of Nanotechnology KU, NANOTEC Center of Excellence at KU, and the Large Scale Research Laboratory of the National Electronics and Computer Technology (NECTEC) for computing and research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supa Hannongbua.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thipnate, P., Chittchang, M., Thasana, N. et al. Exploring the molecular basis for selective cytotoxicity of lamellarins against human hormone-dependent T47D and hormone-independent MDA-MB-231 breast cancer cells. Monatsh Chem 142, 97–109 (2011). https://doi.org/10.1007/s00706-010-0409-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0409-y

Keywords

Navigation