Skip to main content
Log in

Research on the rupture of the covalent bond of the dichlorine molecule

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Photoinduced reaction of gas-phase dichlorine molecules on the short wavelength side of the A-band gives a negative value for the asymmetry parameter of Cl (2 P 1/2) fragments, which conflicts with the intrinsic electronic transition mechanism. In this paper, the dissociation process of the dichlorine molecule has been investigated at numerous excitation wavelengths in the range 310–470 nm using the numerical method and the frontier molecular orbital maps are drawn to obtain insight into the character of the relevant molecular orbitals. The possibilities of radial nonadiabatic transition from the C1Πu to the third Ω = 1u (σ u* ← σ g) electronic state are also examined, and found to cause large variations for the angular distribution functions. The wavelength dependence of the beta parameter β 2(Cl*), which is computed from the partial cross-section with the RZD transition mechanism, agrees with the experimental behavior and further justifies the conclusion that the decrease of beta in the Cl + Cl* channel is because of the radial nonadiabatic interaction between the C and 1u(III) excited states and this interaction is a key mechanism decreasing the beta parameter value. At last, the kinetic energy distributions of fragments are obtained in the asymptotic region.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Duhoo T, Pouilly B (1995) J Chem Phys 103:182

    Article  CAS  Google Scholar 

  2. DeMille D (2002) Phys Rev Lett 88:67901

    Article  CAS  Google Scholar 

  3. Tully JC (1980) Adv Chem Phys 42:63

    Article  Google Scholar 

  4. Atchity GJ, Xantheas SS, Ruedenberg K (1991) J Chem Phys 95:1862

    Article  Google Scholar 

  5. Syage JA, Wessel JA (1988) Appl Spectrosc Rev 24:1

    Article  CAS  Google Scholar 

  6. Vitanov NV, Garraway BM (1996) Phys Rev A 53:4288

    Article  CAS  Google Scholar 

  7. Kondorskiy A, Nakamura H (2004) J Chem Phys 120:8937

    Article  CAS  Google Scholar 

  8. Yang J, Li QS, Zhang SW (2007) Phys Chem Chem Phys 9:466

    Article  CAS  Google Scholar 

  9. Lindeman TG, Wiesenfeld (1979) J Chem Phys 70:2882

    Article  CAS  Google Scholar 

  10. Zhang D (2010) Acta Physica Polonica A 117:457

    CAS  Google Scholar 

  11. Singer SJ, Freed KF, Band YB (1985) Adv Chem Phys 61:1

    Article  CAS  Google Scholar 

  12. Hall GE, Houston PL (1989) Annu Rev Phys Chem 40:375

    Article  CAS  Google Scholar 

  13. Dixon RN (1986) J Chem Phys 85:1866

    Article  CAS  Google Scholar 

  14. Orr-Ewing AJ, Zare RN (1994) Annu Rev Phys Chem 45:315

    Article  CAS  Google Scholar 

  15. McCaffrey JG, Kunz H, Schwentner N (1992) J Chem Phys 96:2825

    Article  CAS  Google Scholar 

  16. Li L, Lipert RJ, Lobue J, Chupka WA, Colson SD (1988) Chem Phys Lett 151:335

    Article  CAS  Google Scholar 

  17. Huang YL, Gordon RJ (1991) J Chem Phys 94:2640

    Article  CAS  Google Scholar 

  18. Mulliken RS (1930) Phys Rev 36:1440

    Article  CAS  Google Scholar 

  19. Busch GE, Mahoney RT, Morse RI, Wilson KR (1969) J Chem Phys 51:449

    Article  CAS  Google Scholar 

  20. Matsumi Y, Kawasaki M, Sato T, Arikawa T (1989) Chem Phys Lett 155:486

    Article  CAS  Google Scholar 

  21. Matsumi Y, Tonokura K, Kawasaki M (1992) J Chem Phys 97:1065

    Article  CAS  Google Scholar 

  22. Herberg G (1950) Molecular spectra and molecular structure I, spectra of diatomic molecules. Van Nostrand Reinhold, New York, p 319

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities and Huazhong Agricultural University Scientific and Technological Self-innovation Foundation (2009QC016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongfang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, D. Research on the rupture of the covalent bond of the dichlorine molecule. Monatsh Chem 141, 1279–1285 (2010). https://doi.org/10.1007/s00706-010-0401-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0401-6

Keywords

Navigation