Skip to main content
Log in

DFT study of 1,3-dipolar cycloadditions of C,N-disubstituted aldonitrones to chalcones evidenced by NMR and X-ray analysis

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A DFT/B3LYP/6-31G* study was carried out to predict the regio- and stereoselectivities of 1,3-dipolar cycloadditions of C,N-disubstituted aldonitrones to chalcones in terms of FMO theory, DFT-based reactivity indices, and activation energy calculations. The structures of the resultant 2,3,4,5-tetrasubstituted isoxazolidines were determined by means of NMR spectroscopy and X-ray analysis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Merino P (2004) In: Padwa A (ed) Science of synthesis, chapter 13 (Nitrones and Analogues). Georg Thieme Verlag, Stuttgart, Germany, 27:511

  2. Torssell KBG (1988) Nitrile oxides, nitrones and nitronates in organic synthesis. VCH, Weinheim, New York

    Google Scholar 

  3. Padwa A, Pearson WH (2002) Synthetic applications of 1, 3-dipolar cycloaddition chemistry towards heterocycles and natural products. Wiley, New York

    Book  Google Scholar 

  4. Chiacchio U, Rescifina A, Iannazzo D, Piperno A, Romeo R, Borrello L, Sciortino MT, Balestrieri E, Macchi B, Mastino A, Romeo G (2007) J Med Chem 50:3747

    Article  CAS  Google Scholar 

  5. Iannazzo D, Piperno A, Pistarà V, Rescifina A, Romeo R (2002) Tetrahedron 58:581

    Article  CAS  Google Scholar 

  6. Merino P, Revuelta J, Tejero T, Chiacchio U, Rescifina A, Romeo G (2003) Tetrahedron 59:3581

    Article  CAS  Google Scholar 

  7. Benchouk W, Mekelleche SM (2008) J Mol Struct Theochem 852:46

    Article  CAS  Google Scholar 

  8. Barba C, Carmona D, Garcia JI, Lamata MP, Mayoral JA, Salvatella L, Viguri F (2006) J Org Chem 71:9831

    Article  CAS  Google Scholar 

  9. Domingo LR, Aurell MJ, Arno M, Saez JA (2007) J Mol Struct Theochem 811:125

    Article  CAS  Google Scholar 

  10. Merino P, Tejero T, Chiacchio U, Romeo G, Rescifina A (2007) Tetrahedron 63:1448

    Article  CAS  Google Scholar 

  11. Acharjee N, Das TK, Banerji A, Banerjee M, Prangé T (2010) J Phys Org Chem. doi:10.1002/poc.1690

  12. Banerji A, Maiti KK, Haldar S, Mukhopadhyay C, Banerji J, Prangé T, Neuman A (2000) Monatsh Chem 131:901

    CAS  Google Scholar 

  13. Banerji A, Gupta M, Biswas PK, Prangé T, Neuman A (2007) J Heterocycl Chem 44:1045

    Article  CAS  Google Scholar 

  14. Banerji A, Biswas PK, Sengupta P, Dasgupta S, Gupta M (2004) Indian J Chem 43B:880

    CAS  Google Scholar 

  15. Gilman H (ed) (1941) Org Synth Coll Vol, John Wiley, New York 1:78

  16. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, NewYork

    Google Scholar 

  17. Parr RG, Pearson RG (1983) J Am Chem Soc 105:7512

    Article  CAS  Google Scholar 

  18. Parr RG, Szentpaly LV, Liu S (1999) J Am Chem Soc 121:1922

    Article  CAS  Google Scholar 

  19. Domingo LR, Aurell MJ, Perez P, Contreras R (2002) Tetrahedron 58:4417

    Article  CAS  Google Scholar 

  20. Perez P, Domingo LR, Aurell MJ, Contreras R (2003) Tetrahedron 59:3117

    Article  CAS  Google Scholar 

  21. Chattaraj PK, Sarkar U, Roy DR (2006) Chem Rev 106:2065

    Article  CAS  Google Scholar 

  22. Yang W, Mortier WJ (1986) J Am Chem Soc 108:5708

    Article  CAS  Google Scholar 

  23. Chandra AK, Nguyen MT (1997) J Chem Soc Perkin Trans 2:1415

    Google Scholar 

  24. Zhang YL, Yang ZZ (2000) J Mol Struct Theochem 496:139

    Article  CAS  Google Scholar 

  25. Koyano K, Suzuki H (1968) Tetrahedron Lett 15:1859

    Article  Google Scholar 

  26. Koyano K, Suzuki H (1969) Bull Soc Chem Japan 42:3306

    Article  CAS  Google Scholar 

  27. Taylar TWJ, Sutton LE (1931) J Chem Soc, p 2190

  28. Taylar TWJ, Sutton LE (1933) J Chem Soc, p 63

  29. Foltino K, Lipscomb WN, Jerslev B (1963) Acta Chem Scand 17:2138

    Article  Google Scholar 

  30. Cossio FP, Morao I, Jiao H, Schleyer PVR (1999) J Am Chem Soc 121:6737

    Article  CAS  Google Scholar 

  31. Carda M, Portolés R, Murga J, Uriel S, Marco JA, Domingo LR, Zaragoźa RJ, Röper H (2000) J Org Chem 65:7000

    Article  CAS  Google Scholar 

  32. Pauling L (1960) The nature of chemical bond, 3rd edn. Cornell University, Ithaca, New York, p 239

    Google Scholar 

  33. Magnuson EC, Pranata J (1998) J Comput Chem 19:1795

    Article  CAS  Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  37. Miertus S, Tomasi J (1982) Chem Phys 65:239

    Article  CAS  Google Scholar 

  38. Miertus S, Scrocco E, Tomasi J (1981) Chem Phys 55:117

    Article  CAS  Google Scholar 

  39. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Rev. D.01. Gaussian Inc, Wallingford, CT

    Google Scholar 

  41. Sheldrick GM, Schneider TR (1997) Methods Enzymol 277:319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Nivedita Acharjee is thankful to the Council of Scientific and Industrial research, New Delhi (India), for financial support and the University of Calcutta for laboratory and computational facilities. We are thankful to Prof. Manas Banerjee of Burdwan University for some informative discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avijit Banerji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Acharjee, N., Banerji, A. & Prangé, T. DFT study of 1,3-dipolar cycloadditions of C,N-disubstituted aldonitrones to chalcones evidenced by NMR and X-ray analysis. Monatsh Chem 141, 1213–1221 (2010). https://doi.org/10.1007/s00706-010-0393-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0393-2

Keywords

Navigation