Skip to main content
Log in

DFT and TD-DFT studies on symmetrical squaraine dyes for nanocrystalline solar cells

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The ground-state geometries, electronic structures, and electronic absorption spectra of symmetrical squaraine dyes SQ1–SQ4 were investigated using density functional theory and time-dependent DFT at the B3LYP level. The calculated geometries indicate that strong conjugation effects occur in the dyes. The highest occupied molecular orbital energy levels were calculated to be −4.95, −5.22, −5.09, and −5.06 eV, and the lowest unoccupied molecular orbital energies were −2.72, −3.05, −2.80, and −2.80 eV for SQ1–SQ4, respectively. Taking the conduction band energy of TiO2 into account, these data reveal the sensitized mechanism: the interfacial electron transfer between the semiconductor TiO2 electrode and the dye sensitizers SQ1–SQ4 are electron-injection processes from excited dyes to the semiconductor conduction band. The intense calculated absorption bands are assigned to π → π* transitions, which exhibit appreciable blue-shift compared with the experimental absorption maxima due to the inherent approximations in the TD-DFT.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737

    Article  Google Scholar 

  2. Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos N, Grätzel M (1993) J Am Chem Soc 115:6382

    Article  CAS  Google Scholar 

  3. Nazeeruddin MK, Péchy P, Renouard T, Zakeeruddin SM, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklover V, Spiccia L, Deacon GB, Bignozzi CA, Grätzel M (2001) J Am Chem Soc 123:1613

    Article  CAS  Google Scholar 

  4. Nazeeruddin MK, Angelis FD, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835

    Article  CAS  Google Scholar 

  5. Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:10720

    Article  CAS  Google Scholar 

  6. Alex S, Santhosh U, Das S (2005) J Photochem Photobiol A 172:63

    Article  CAS  Google Scholar 

  7. Chen Y, Zeng Z, Li C, Wang W, Wang X, Zhang B (2005) New J Chem 29:773

    Article  CAS  Google Scholar 

  8. Li C, Wang W, Wang X, Zhang B, Cao Y (2005) Chem Lett 34:554

    Article  CAS  Google Scholar 

  9. Otsuka A, Funabiki K, Sugiyama N, Yoshida T, Minoura H, Matsui M (2006) Chem Lett 35:666

    Article  CAS  Google Scholar 

  10. Burke A, Schmidt-Mende L, Ito S, Grätzel M (2007) Chem Comm 234

  11. Yum J-H, Walter P, Huber S, Rentsch D, Geiger T, Nüesch F, Angelis FD, Grätzel M, Nazeeruddin MK (2007) J Am Chem Soc 129:10320

    Article  CAS  Google Scholar 

  12. Yum J-H, Moon SJ, Humphry-Baker R, Walter P, Geiger T, Nüesch F, Grätzel M, Nazeeruddin MK (2008) Nanotechnology 19:424005

    Article  Google Scholar 

  13. Aiga F, Tada T (2003) J Mol Struct 658:25

    Article  CAS  Google Scholar 

  14. Monat JE, Rodriguez JH, McCusker JK (2002) J Phys Chem A 106:7399

    Article  CAS  Google Scholar 

  15. Fantacci S, De Angelis F, Selloni A (2003) J Am Chem Soc 125:4381

    Article  CAS  Google Scholar 

  16. Angelis FD, Fantacci S, Selloni A (2004) Chem Phys Lett 389:204

    Article  Google Scholar 

  17. Angelis FD, Fantacci S, Selloni A, Nazeeruddin MK (2005) Chem Phys Lett 415:115

    Article  Google Scholar 

  18. Onozawa-Komatsuzaki N, Kitao O, Yanagida M, Himeda Y, Sugihara H, Kasuga K (2006) New J Chem 30:689

    Article  CAS  Google Scholar 

  19. Xu Y, Chen W-K, Cao M-J, Liu S-H, Li J-Q, Philippopoulos AI, Falaras P (2006) Chem Phys 330:204

    Article  CAS  Google Scholar 

  20. Zhang X, Zhang J-J, Xia Y-Y (2007) J Photochem Photobiol A Chem 185:283

    Article  CAS  Google Scholar 

  21. Liu Z (2008) J Mol Struct (Theochem) 862:44

    Article  CAS  Google Scholar 

  22. Zhang X, Zhang J-J, Xia Y-Y (2008) J Photochem Photobiol A Chem 194:167

    Article  CAS  Google Scholar 

  23. Xu J, Liang G, Wang L, Xu W, Cui W, Zhang H, Li Z (2010) J Serb Chem Soc 75:259

    Article  CAS  Google Scholar 

  24. Lundqvist MJ, Nilsing M, Persson P, Lunell S (2006) Int J Quantum Chem 106:3214

    Article  CAS  Google Scholar 

  25. Hara K, Kurashige M, Dan-oh Y, Kasada C, Shinpo A, Suga S, Sayama K, Arakawa H (2003) New J Chem 27:783

    Article  CAS  Google Scholar 

  26. Watson DF, Meyer GJ (2005) Annu Rev Phys Chem 56:119

    Article  CAS  Google Scholar 

  27. Srinivas K, Prabhakar C, Devi CL, Yesudas K, Bhanuprakash K, Rao VJ (2007) J Phys Chem A 111:3378

    Article  CAS  Google Scholar 

  28. Feki H, Ahmed AB, Fourati N, Abid Y, Minot C (2009) J Mol Struct (Theochem) 895:21

    Article  CAS  Google Scholar 

  29. Champagne B, Guillaume M, Zutterman F (2006) Chem Phys Lett 425:105

    Article  CAS  Google Scholar 

  30. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima Y, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox IE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) GAUSSIAN 03. Gaussian Inc., Wallingford

    Google Scholar 

  31. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  32. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  33. Cossi M, Barone V, Cammi R, Tomasi J (1996) Chem Phys Lett 255:327

    Article  CAS  Google Scholar 

  34. Barone V, Cossi M (1998) J Phys Chem A 102:1995

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation of Wuhan University of Science and Engineering (No. 2009003 and 20073208), the Natural Science Foundation of Hubei Province (No. 2008CDB261), and the Key Project of Science and Technology Research of Ministry of Education (No. 208089). The authors gratefully wish to express their thanks to the reviewers for critically reviewing the manuscript and making important suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Zhang, H., Wang, L. et al. DFT and TD-DFT studies on symmetrical squaraine dyes for nanocrystalline solar cells. Monatsh Chem 141, 549–555 (2010). https://doi.org/10.1007/s00706-010-0298-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0298-0

Keywords

Navigation