Skip to main content
Log in

Predicted binding rate of new cephalosporin antibiotics by a 3D-QSAR method: a new approach

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Antibiotics are chemotherapeutic agents with activity against microorganisms, for example bacteria, fungi, or protozoa, used for the treatment of many types of diseases. Binding of antibiotics to serum proteins in human plasma is a major determinant of their pharmacodynamic and pharmacokinetic behavior and, consequently, can affect their systemic distribution in the body. Here, the predicted binding rates of ceftazidime and 13 other pharmacological agents classified as antibiotics to plasma proteins (percentage fraction bound; PFB) were evaluated by use of 3D-QSAR models. We attempted to establish the contribution of hydrogen bond donor/acceptor and hydrophobic properties supplied by electrostatic fields to the PFB. Significant cross-validated correlation q 2 (0.5–0.7) and the fitted correlation r 2 (0.7–0.97) coefficients revealed that these models have reasonable power to predict the design 19 new antibiotics using ceftazidime as template, these compounds being our suggestion for further studies.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zechini B, Versace I (2009) Rec Pat Antiinfect Drug Discov 4:37

    Article  CAS  Google Scholar 

  2. Wong DM, Blumberg DA, Lowe LG (2006) Am Fam Physician 74:956

    Google Scholar 

  3. Lapis K (2008) Orv Hetil 149:2419

    Article  Google Scholar 

  4. Sacha P, Wieczorek P, Hauschild T, Zorawski M, Olszanska D, Tryniszewska E (2008) Folia Histochem Cytobiol 46:137

    Article  CAS  Google Scholar 

  5. Limban C, Chifiriuc MC, Missir AV, Chirita IC, Bleotu C (2008) Molecules 13:567

    Article  CAS  Google Scholar 

  6. Mesaros N, Nordmann P, Plesiat P, Roussel-Delvallez M, Van Eldere J, Glupczynski Y, Van Laethem Y, Jacobs F, Lebecque P, Malfroot A, Tulkens PM, Van Bambeke F (2007) Clin Microbiol Infect 13:560

    Article  CAS  Google Scholar 

  7. Guggenheim M, Zbinden R, Handschin AE, Gohritz A, Altintas MA, Giovanoli P (2009) Burns 35:553

    Google Scholar 

  8. Barcenilla Gaite F, Jover Saenz A, Vallverdu Vidal M, Castellana Perello D (2008) Rev Esp Quimioter 21:9

    Google Scholar 

  9. Levine DP (2008) J Antimicrob Chemother 62:35

    Article  Google Scholar 

  10. Hatipoglu CA, Yildiz E, Koktekir E, Ipekkan K, Karakoc EA, Demiroz AP (2008) Mikrobiyol Bul 42:695

    Google Scholar 

  11. Watanabe Y, Akizuki T (2008) J Craniofac Surg 19:1542

    Article  Google Scholar 

  12. Hsu HE, Shutt KA, Moore MR, Beall BW, Bennett NM, Craig AS, Farley MM, Jorgensen JH, Lexau CA, Petit S, Reingold A, Schaffner W, Thomas A, Whitney CG, Harrison LH (2009) N Engl J Med 360:244

    Article  CAS  Google Scholar 

  13. Jacoby GA, Munoz-Price LS (2005) N Engl J Med 352:380

    Article  CAS  Google Scholar 

  14. Hershkovich J, Broides A, Kirjner L, Smith H, Gorodischer R (2009) Clin Exp Allergy 39:726

    Google Scholar 

  15. Halevy S, Grossman N (2008) Isr Med Assoc J 10:865

    Google Scholar 

  16. Lugovic Mihic L, Bulat V, Situm M, Cavka V, Krolo I (2008) Coll Antropol 32:153

    Google Scholar 

  17. La Shell MS, Tankersley MS (2008) Ann Allergy Asthma Immunol 101:559

    Article  Google Scholar 

  18. Gunturi SB, Narayanan R, Khandelwal A (2006) Bioorg Med Chem 14:4118

    Article  CAS  Google Scholar 

  19. Narayanan R, Gunturi SB (2005) Bioorg Med Chem 13:3017

    Article  CAS  Google Scholar 

  20. Herve F, Urien S, Albengres E, Duche JC, Tillement JP (1994) Clin Pharmacokinet 26:44

    Article  CAS  Google Scholar 

  21. Hall LM, Hall LH, Kier LB (2003) J Comput Aided Mol Des 17:103

    Article  CAS  Google Scholar 

  22. Colmenarejo G (2003) Med Res Rev 23:275

    Article  CAS  Google Scholar 

  23. Hardman JG, Limbird LE (1996) Goodman & Gillman’s the pharmacological basis of therapeutics, 9th edn. McGraw–Hill, New York (appendix)

  24. Homer RW, Swanson J, Jilek RJ, Hurst T, Clark RD (2008) J Chem Inf Model 48:2294

    Article  CAS  Google Scholar 

  25. Sybyl Theory Manual (1988) Tripos Associates Inc, St Louis

  26. Pastor M, Cruciani G, McLay I, Pickett S, Clementi S (2000) J Med Chem 43:3233

    Article  CAS  Google Scholar 

  27. Carosati E, Lemoine H, Spogli R, Grittner D, Mannhold R, Tabarrini O, Sabatini S, Cecchetti V (2005) Bioorg Med Chem 13:5581

    Article  CAS  Google Scholar 

  28. Waller CL, Oprea TI, Giolitti A, Marshall GR (1993) J Med Chem 36:4152

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Romanian VIASAN program for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Speranta Avram.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avram, S., Duda-Seiman, D.M., Duda-Seiman, C. et al. Predicted binding rate of new cephalosporin antibiotics by a 3D-QSAR method: a new approach. Monatsh Chem 141, 589–597 (2010). https://doi.org/10.1007/s00706-010-0294-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0294-4

Keywords

Navigation