Skip to main content
Log in

A computational study of oxygen-termination of a (6,0) boron nitride nanotube

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The effects of oxygen (O) termination on the electronic and structural properties of a (6,0) boron nitride nanotube (BNNT) were investigated by density functional theory (DFT) calculations. All-atomic optimization and calculations of chemical shielding (CS) properties were performed for four models of the investigated BNNT based on different termination of the nanotube by the O atoms: perfect, OB-end, ON-end, and OBN-end models. The results indicate that the B–N bond lengths are not changed by O-termination but the tubular diameters, dipole moments, and band gaps are substantially changed, especially for the OBN-end model in which both tips are terminated by the O atoms. The CS properties also indicate that the atoms of the models are divided into layers on the basis of similar electronic environment in each atomic layer. In the OB-end model where the atoms of the B-tip are substituted by the O atoms, the results are indicative of attraction between the N and O-terminating atoms but in the ON-end model where the atoms of the N-tip are substituted by the O atoms, strong bonds between the B and O-terminating atoms are detected.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Coleman JN, O’Brien DF, McCarthy B, Barklie RC, Blau WJ (2001) Monatsh Chem 132:53

    CAS  Google Scholar 

  3. Treboux G, Nakamura S (2009) 140:839

  4. de Menezes VM, Fagan SB, Zanella I, Mota R (2009) Microelectron J 40:877

    Article  Google Scholar 

  5. Ni MY, Zeng Z, Ju X (2009) Microelectron J 40:863

    Article  CAS  Google Scholar 

  6. Chen X, Ma J, Hu Z, Wu Q, Chen Y (2005) J Am Chem Soc 127:17144

    Article  Google Scholar 

  7. Zhang D, Zhang RQ (2003) Chem Phys Lett 371:426

    Article  CAS  Google Scholar 

  8. Loiseau A, Willaime F, Demoncy N, Schramcheko N, Hug G, Colliex C, Pascard H (1998) Carbon 36:743

    Article  CAS  Google Scholar 

  9. Mirzaei M (2009) Z Phys Chem 223:815

    CAS  Google Scholar 

  10. Mirzaei M (2009) Monatsh Chem 140:1275

    Article  CAS  Google Scholar 

  11. Song J, Huang Y, Jiang H, Hwang KC, Yu MF (2006) Int J Mech Sci 48:1197

    Article  Google Scholar 

  12. Arenal R, Ferrari AC, Reich S, Wirtz L, Mevellec Y-J, Lefrant S, Rubio A, Loiseau A (2006) Nano Lett 6:1812

    Article  CAS  Google Scholar 

  13. Blasé X, Rubio A, Louie SG, Cohen ML (1994) Europhys Lett 28:335

    Article  Google Scholar 

  14. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966

    Article  CAS  Google Scholar 

  15. Zhang SL (2001) Phys Lett A 285:207

    Article  CAS  Google Scholar 

  16. Hou S, Shen Z, Zhang J, Zhao X, Xue Z (2004) Chem Phys Lett 393:179

    Article  CAS  Google Scholar 

  17. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) GAUSSIAN 98. Gaussian, Inc., Pittsburgh

    Google Scholar 

  18. Wolinski K, Hinton JF, Pulay P (1990) J Am Chem Soc 112:8251

    Article  CAS  Google Scholar 

  19. Nouri A, Mirzaei M (2009) J Molec Struct (THEOCHEM) 913:207

    Article  CAS  Google Scholar 

  20. Mirzaei M, Nouri A (2010) J Molec Struct (THEOCHEM) 942:83

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzaei, M., Mirzaei, M. A computational study of oxygen-termination of a (6,0) boron nitride nanotube. Monatsh Chem 141, 491–494 (2010). https://doi.org/10.1007/s00706-010-0287-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-010-0287-3

Keywords

Navigation