Skip to main content
Log in

Osmotic coefficients of aqueous solutions of potassium acesulfame, sodium saccharin, and ammonium and tetramethylammonium cyclohexylsulfamates at the freezing point of solutions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The osmotic coefficients of aqueous solutions of potassium acesulfame (0.67 mol kg−1), sodium saccharin (0.75 mol kg−1), and tetramethylammonium (0.55 mol kg−1) and ammonium (0.35 mol kg−1) cyclohexylsulfamates were determined up to the molality indicated in parentheses. The osmotic coefficients were fitted to the Pitzer equation, and the ion interaction parameters α 1, β (0), and β (1) were evaluated. The mean ionic activity coefficients of the solutes were calculated, and the non-ideal behaviour of the systems investigated were characterized by calculation of the excess Gibbs energy of the solution and the respective partial molar functions of solute and solvent. The partial molar excess Gibbs energies of the solutes are negative, as also are the corresponding excess Gibbs energies of their solutions, and the partial molar excess Gibbs energies of the solvent are positive and increase slightly with increasing concentrations of the solutes. The solvation ability of water was calculated from differences between the Gibbs energy of solution of water in the aqueous solutions and that of pure water, and are positive and small for all the solutes investigated, throughout the concentration ranges studied.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Birch GG (1991) Food Technol 45:114

    CAS  Google Scholar 

  2. Shallenberger RS, Acre TE (1967) Nature 216:480

    Article  CAS  Google Scholar 

  3. Mathlouthi M, Bressann C, Portmann MO, Serghat S (1993) In: Mathlouthi M, Kanters JA, Birch GG (eds) Sweet-taste chemoreception. Elsevier, Essex, p 141

    Google Scholar 

  4. Pitzer KS, Mayogra G (1973) J Phys Chem 77:2300

    Article  CAS  Google Scholar 

  5. Bromley LA (1972) J Chem Thermodyn 4:669

    Article  CAS  Google Scholar 

  6. Bromley LA (1973) AIChE J 19:313

    Article  CAS  Google Scholar 

  7. Chen CC, Britt HI, Boston JT, Evans LB (1982) AIChE J 28:588

    Article  CAS  Google Scholar 

  8. Gamsjäger H, Bugajski J, Gajda T, Lemire R, Preis W (2005) In: CD OE (ed) Chemical thermodynamics of nickel, vol 6. North Holland, Amsterdam

    Google Scholar 

  9. Desnoyers JE (1979) In: Pytkowicz RM (ed) Activity coefficients in electrolyte solutions. CRC Press, Boca Raton, p 139

    Google Scholar 

  10. Rudan-Tasic D, Župec T, Klofutar C, Bešter-Rogač M (2005) J Sol Chem 34:631

    Article  CAS  Google Scholar 

  11. Rudan-Tasic D, Klofutar C, Bešter-Rogač M (2006) Acta Chim Slov 53:324

    CAS  Google Scholar 

  12. Archer DG, Wang P (1990) J Phys Chem Ref Data 19:371

    Article  CAS  Google Scholar 

  13. Horwath AL (1985) Handbook of aqueous electrolyte solutions, physical properties, estimation and correlation methods. Halsted Press, New York, p 192

    Google Scholar 

  14. Pitzer KS (1973) J Phys Chem 77:268

    Article  CAS  Google Scholar 

  15. Klofutar C, Horvat J, Rudan-Tasic D (2006) Acta Chim Slov 53:274

    CAS  Google Scholar 

  16. Klofutar C, Horvat J, Rudan-Tasic D (2006) Monatsh Chem 137:1151

    Article  CAS  Google Scholar 

  17. Marshall SL, May PM, Hefter GT (1995) J Chem Eng Data 40:1041

    Article  CAS  Google Scholar 

  18. Friedman HL (1962) In: Prigogine I (ed) Monographs in statistical physics and thermodynamics, vol 3. Interscience Publishers, New York, p 191

    Google Scholar 

  19. Bonner OD, Paljk Š, Klofutar C (1993) J Sol Chem 22:27

    Article  CAS  Google Scholar 

  20. Ben-Naim A (1987) Solvation thermodynamics. Plenum Press, New York, p 81

    Google Scholar 

  21. Kell GS (1975) J Chem Eng Data 20:97

    Article  CAS  Google Scholar 

  22. Klofutar C, Rudan-Tasic D (2005) Monatsh Chem 136:1727

    Article  CAS  Google Scholar 

  23. Rudan-Tasic D, Klofutar C (2004) Food Chem 84:351

    Article  CAS  Google Scholar 

  24. Millero FJ (1972) In: Horne RA (ed) Water and aqueous solutions, structure, thermodynamics and transport properties. Wiley, New York, p 519

    Google Scholar 

  25. West RC, Astle MJ, Beyer WH (1985) Handbook of chemistry and physics, 65th edn. CRC Press, Boca Raton, p D-256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darja Rudan-Tasic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rudan-Tasic, D., Poklar Ulrih, N. & Klofutar, C. Osmotic coefficients of aqueous solutions of potassium acesulfame, sodium saccharin, and ammonium and tetramethylammonium cyclohexylsulfamates at the freezing point of solutions. Monatsh Chem 141, 149–155 (2010). https://doi.org/10.1007/s00706-009-0237-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0237-0

Keywords

Navigation