Skip to main content
Log in

A new dioxotetraamine ligand derived from binicotinic acid: synthesis, coordination, and fluorescence behaviour towards divalent transition metal ions

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

A novel bipyridyl-based fluorescent system, N,N′-bis(2-aminoethyl)-2,2′-bipyridine-3,3′-dicarboxamide (BABD), with two different coordination sites, bidentate bipyridyl and tetradentate dioxotetraamine, has been synthesized, and characterized by elemental analysis and spectroscopic (UV–Vis, IR, 1H NMR, and 13C NMR) methods. The lowest energy molecular geometry of BABD was obtained by empirical then quantum mechanical treatment. The binding ability of BABD with H+, Co(II), Ni(II), Cu(II), and Zn(II) ions was investigated in aqueous 0.1 M KCl at 25 ± 1 °C by potentiometric methods. Four protonation constants were determined for BABD, and were used as input data to evaluate the formation constants of the metal complexes. The coordination behaviour of BABD in solution indicated that at low pH the bipyridyl unit coordinates to all metal ions, but at higher pH (>7.0) coordination of the dioxotetraamine unit occurs with the Cu(II) and Ni(II) ions only. The 3D-model structure of the metal complex was predicted by semi-empirical calculation using the AM1/d Hamiltonian. Fluorimetric titrations indicate that at pH 9 BABD exhibits fluorescence enhancement with increasing concentration of Cu(II) and Ni(II) ions, but at pH 7.2 fluorescence enhancement is observed only in the presence of Cu(II) ions. No remarkable effect on the fluorescence of BABD was observed in the presence of other biologically relevant metal ions, for example Ni(II), Fe(II), Mn(II), Co(II), Zn(II), Mg(II), Ca(II), and Hg(II).

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kawakami J, Miyamoto R, Fukushi A, Shimokazi K, Ho B (2002) J Photochem Photobiol A Chem 146:163

    Article  CAS  Google Scholar 

  2. Ramachandran B, Samanta A (1998) Chem Phys Lett 290:9

    Article  Google Scholar 

  3. Buhmann P, Pretsch E, Bakker E (1998) Chem Rev 98:1593

    Article  Google Scholar 

  4. Kramer R (1998) Angew Chem Int Ed 37:772

    Article  CAS  Google Scholar 

  5. Lehn JM (1995) Supramolecular chemistry: concepts and perspectives. VCH, Weinheim

    Google Scholar 

  6. Cram DJ (1992) Nature 356:29

    Article  CAS  Google Scholar 

  7. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Coord Chem Rev 205:59

    Article  CAS  Google Scholar 

  8. Bargossi C, Fiorini MC, Montalti M, Prodi L, Zaccgeroni N (2000) Coord Chem Rev 208:17

    Article  CAS  Google Scholar 

  9. Gunnlaugsson T, Bichell B, Nolan C (2002) Tetrahedron Lett 43:4989

    Article  CAS  Google Scholar 

  10. Castagnetto JM, Canary JW (1998) Chem Commun 203

  11. Hua J, Wang YG (2005) Chem Lett 34:98

    Article  CAS  Google Scholar 

  12. Fan J, Peng X, Wu Y, Lu E, Han J, Zhang H, Zhang R, Fu X (2005) J Lumin 114:125

    Article  CAS  Google Scholar 

  13. Burdette SC, Walkap GK, Spingler B, Tsien RY, Lippard SJ (2001) J Am Chem Soc 123:7831

    Article  CAS  Google Scholar 

  14. Kawakami J, Ohta M, Yamauchi Y, Ohzeki K (2003) Anal Sci 19:1353

    Article  CAS  Google Scholar 

  15. Bargossi C, Eiorini MC, Montalti M, Prodi L, Zachheroni N (2008) Coord Chem Rev 17:32

    Google Scholar 

  16. Hill H, Raspin KA (1968) J Chem Soc (A) 3036

  17. Chin M, Wone D, Nguyen Q, Nathan LC, Wagenknecht PS (1999) Inorg Chim Acta 292:254

    Article  CAS  Google Scholar 

  18. De Santis G, Fabbrizzi L, Lanfredi AMM, Pallavicini P, Perotti A, Ugozzoli F, Zema M (1995) Inorg Chem 34:4529

    Article  Google Scholar 

  19. Fabrrizzi L, Poggi A (1995) Chem Soc Rev 197

  20. Santos MA, Gaspar M, Amorim MT (1999) Inorg Chim Acta 284:20

    Article  CAS  Google Scholar 

  21. Fabrrizzi L, Licchelli M, Pallavicini P, Perotti A, Taglietti A, Sacchi D (1994) Angew Chem Int Ed 33:1975

    Article  Google Scholar 

  22. Fabrrizzi L, Licchelli M, Pallavicini P, Taglietti A, Sacchi D (1996) Analyst 121:1763

    Article  Google Scholar 

  23. De Santis G, Di Casa M, Fabrrizzi L, Licchelli M, Mangano C, Pallavicini P, Perotti A, Poggi A, Sacchi D, Taglietti A, Fabrrizzi L, Poggi A (eds) (1996) Transition metals in supramolecular chemistry, NATO-ASI Series. Kluwer, Dordrecht

  24. Costa I, Fabrrizzi L, Licchelli M, Pallavicini P, Parodi L, Prodi L, Bolletta F, Montalti M, Zaccheroni N (1999) J Chem Soc Dalton Trans 1381

  25. Jiang LJ, Luo QH, Duan C, Shen MC, Hu HW, Liu YJ (1999) Inorg Chim Acta 295:48

    Article  CAS  Google Scholar 

  26. Jiang LJ, Luo QH, Wang ZL, Liu DJ, Zhang Z, Hu HW (2001) Polyhedron 20:2807

    Article  CAS  Google Scholar 

  27. Jiang LJ, Luo QH, Xiang QX, Shen MC, Hu HW (2002) Eur J Inorg Chem 664

  28. Luo QH, Zhang JJ, Hu XL, Jiang XQ, Shen MC, Li FM (2004) Inorg Chim Acta 357:66

    Article  CAS  Google Scholar 

  29. Kurosaki H, Yoshida H, Fujimoto A, Goto M, Shionoya M, Kimura E, Espinosa E, Barbe J-M, Guilard R (2001) J Chem Soc Dalton Trans 898

  30. Amendola V, Fabrizzi L, Mangano C, Pallavicini P, Perotti A, Taglietti A (2000) J Chem Soc Dalton Trans 185

  31. Amendola V, Brusoni C, Fabrizzi L, Mangano C, Miller H, Pallavicini P, Perotti A, Taglietti A (2001) J Chem Soc Dalton Trans 3528

  32. Amendola V, Fabbrizzi L, Mangano C, Miller H, Pallavicini P, Perotti A, Taglietti A (2002) Angew Chem Int Ed 41:2553

    Article  CAS  Google Scholar 

  33. Fabbrizzi L, Foti F, Patroni FS, Pallavicini P, Taglietti A (2004) Angew Chem Int Ed 43:5073

    Article  CAS  Google Scholar 

  34. Fabbrizzi L, Foti F, Patroni FS, Pallavicini P, Taglietti A (2004) Angew Chem 116:5183

    Article  Google Scholar 

  35. Kodama M, Kimura E (1979) J Chem Soc Dalton Trans 325

  36. Kodama M, Kimura E (1981) J Chem Soc Dalton Trans 694

  37. Lampeka YD, Gavrish SP (2000) Polyhedron 19:2533

    Article  CAS  Google Scholar 

  38. Luo QH, Zhang JJ, Hu XL, Jiang XQ, Shen MC, Li FM (2004) Inorg Chim Acta 357:66

    Article  CAS  Google Scholar 

  39. Kwak OK, Kim JJ, Min KS, Kim J, Kim BG (2007) Inorg Chem Commun 10:811

    Article  CAS  Google Scholar 

  40. Bazzicalupi C, Bellusci A, Bencini A, Berni E, Bianchi A, Ciattini S, Girogi C, Valtancoli B (2002) J Chem Soc Dalton Trans 2151

  41. Bissell RA, de Silva AP, Gunaratne HQN, Lynch PLM, Maguire GEM, McCoy CP, Sandanayake KRAS (1993) Top Curr Chem 168:223

    CAS  Google Scholar 

  42. Rurack K, Resch U, Senoner M, Dahne S (1993) J Fluoresc 3:141

    Article  CAS  Google Scholar 

  43. Trving H, Mellor DH (1962) J Chem Soc 5222

  44. Stewart JJP, MOPAC 70, University of Bloomington, IN

  45. Sahoo SK, Muthu SE, Baral M, Kanungo BK (2006) Spectrochim Acta A 63:574

    Article  Google Scholar 

  46. Jiang LJ, Luo QH, Duan C, Shen MC, Hu HW, Liu YJ (1999) Inorg Chim Acta 295:48

    Article  CAS  Google Scholar 

  47. Jiang LJ, Luo QH, Wang ZL, Liu DJ, Zhang Z, Hu HW (2001) Polyhedron 20:2807

    Article  CAS  Google Scholar 

  48. Jiang LJ, Luo QH, Xiang QX, Shen MC, Hu HW (2002) Eur J Inorg Chem 664

  49. Iyer CSP, Resbalan S (2005) J Lumin 111:121

    Article  Google Scholar 

  50. Ghosh P, Bhardwaj PK, Mandal S, Sanjib G (1996) J Am Chem Soc 118:1553

    Article  CAS  Google Scholar 

  51. Kaur S, Kumar S (2002) Chem Commun 2840

  52. Banthia S, Samanta A (2002) J Phys Chem B 106:5572

    Article  CAS  Google Scholar 

  53. Dholakia S, Gillard RD, Wimmer FL (1985) Polyhedron 4:791

    Article  CAS  Google Scholar 

  54. Sahoo SK, Bera RK, Baral M, Kanungo BK (2007) J Photochem Photobiol A Chem 188:298

    Article  CAS  Google Scholar 

  55. Sahoo SK, Baral M, Kanungo BK (2006) Polyhedron 25:722

    Article  CAS  Google Scholar 

  56. Gans P, Sabatini A, Vacca A (1996) Talanta 43:1739

    Article  CAS  Google Scholar 

  57. Gans P, Sabatini A, Vacca A (1999) Ann Chim (Rome) 89:45

    CAS  Google Scholar 

  58. Alderighia L, Gans P, Ienco A, Peters D, Sabatini A, Vacca A (1999) Coord Chem Rev 184:311

    Article  Google Scholar 

  59. CAChe version 611 (2003), Fujitsu Limited

  60. HyperChem Version 7.5, Hypercube Inc, 419 Philip Street, Waterloo, Ontario, Canada, N2L 3X2

Download references

Acknowledgments

One of the authors, RKB, is grateful to MHRD, New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram Kishore Kanungo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kanungo, B.K., Baral, M., Bera, R.K. et al. A new dioxotetraamine ligand derived from binicotinic acid: synthesis, coordination, and fluorescence behaviour towards divalent transition metal ions. Monatsh Chem 141, 157–168 (2010). https://doi.org/10.1007/s00706-009-0235-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0235-2

Keywords

Navigation