Skip to main content
Log in

Rapid solidification of cryolite and cryolite–alumina melts

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Rapid solidification processing (with a cooling rate in the interval 105–106 K s−1) was used to prepare deeply undercooled cryolite–alumina melts. These samples were analyzed by XRD, infrared, and Raman spectroscopy. Besides cryolite, the amorphous phase and a low amount of ι-Al2O3 were detected. Annealing of the quenched sample revealed the transformation of metastable amorphous phases into different products depending on the annealing conditions. The results obtained showed that all of the elements (Na, Al, O, and F) are probably present in the amorphous parts of the quenched samples.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Boča M, Kucharík M (2007) Chem Pap 61:217

    Article  Google Scholar 

  2. Thonstad J, Fellner P, Haarberg GM, Híveš J, Kvande H, Sterten Å (2001) Aluminium electrolysis, fundamentals of the Hall–Héroult process, 3rd edn. Aluminium-Verlag, Düsseldorf

  3. Gilbert B, Mamantov G, Begun GM (1976) Inorg Nucl Chem Lett 12:415

    Article  CAS  Google Scholar 

  4. Robert E, Olsen JE, Daněk V, Tixhon E, Østvold T, Gilbert B (1997) J Phys Chem B101:9447

    Google Scholar 

  5. Lacassagne V, Bessada C, Florian P, Bouvet S, Ollivier B, Coutures JP, Massiot D (2002) J Phys Chem B106:1862

    Google Scholar 

  6. Brooker MH, Berg RW, von Barner JH, Bjerrum NJ (2000) Inorg Chem 39:4725

    Article  CAS  Google Scholar 

  7. Tørklep K, Øye HA (1979) Light metals 1979. In: Proc Sessions of 108th AIME Annual Meeting, New Orleans, LA, 19–21 Feb 1979, p 373

  8. Foster PA (1959) J Electrochem Soc 106:971

    Article  CAS  Google Scholar 

  9. Foster PA (1960) J Am Ceram Soc 43:66

    Article  CAS  Google Scholar 

  10. Perrotta J, Young JE Jr (1974) J Am Ceram Soc 57:405

    Article  CAS  Google Scholar 

  11. Elliot G, Huggins RA (1975) J Am Ceram Soc 58:497

    Article  CAS  Google Scholar 

  12. Mazza D, Vallino M, Busca G (1992) J Am Ceram Soc 75:1929

    Article  CAS  Google Scholar 

  13. Fischer RX, Schmücker M, Angerer P, Schneider H (2001) Am Mineral 86:1513

    CAS  Google Scholar 

  14. Førland T, Ratkje SK (1973) Acta Chem Scand 27:1883

    Article  Google Scholar 

  15. Sterten Å (1980) Electrochim Acta 25:1673

    Article  CAS  Google Scholar 

  16. Kvande H (1980) Electrochim Acta 25:273

    Article  Google Scholar 

  17. Kadlečíková M, Breza J, Veselý M (2001) Microelectron J 32:955

    Article  Google Scholar 

  18. Korenko M, Kucharík M, Janičkovič D (2007) Chem Pap 62:219

    Article  Google Scholar 

  19. Jayaraman V, Gnanasekaran T, Periaswami G (1997) Mater Lett 30:157

    Article  CAS  Google Scholar 

  20. Sartori S, Martucci A, Muffato A, Guglielmi M (2004) J Eur Ceram Soc 24:911

    Article  CAS  Google Scholar 

  21. Kucharík M, Boca M, Bessada C, Fuess H (2005) Eur J Inorg Chem 9:1781

    Article  Google Scholar 

  22. Sterten Å, Hamberg K, Mæland I (1982) Acta Chem Scand 36:329

    Article  Google Scholar 

  23. Bruno M, Herstad O, Holm JL (1998) Acta Chem Scand 52:1399

    Article  CAS  Google Scholar 

  24. Foster PA (1964) J Chem Eng Data 9:200

    Article  CAS  Google Scholar 

  25. Bache Ø, Ystenes M (1989) Acta Chem Scand 43:97

    Article  CAS  Google Scholar 

  26. Yu N, McIntire PC, Nastasi M, Sickafus KE (1995) Phys Rev B 8:17518

    Google Scholar 

  27. Shek CH, Lai JKL, Gu TS, Lin GM (1997) Nanostruct Mater 8:605

    Article  CAS  Google Scholar 

  28. Wang Y, Bhandari S, Motra A, Parkin S, Moore J, Atwood DA (2005) Z Anorg Allg Chem 631:2937

    Article  CAS  Google Scholar 

  29. Jacobson LA, McKittrick J (1994) Mater Sci Eng R 11:355

    Article  Google Scholar 

Download references

Acknowledgments

Slovak Grant Agencies VEGA 2/7077/27, VEGA 2/0058/09, and APVV-0413-06 are acknowledged for financial support. This publication is the result of the project implementation: Centre for Materials, Layers, and Systems for Applications and Chemical Processes Under Extreme Conditions, supported by the Research & Development Operational Programme, funded by the ERDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marián Kucharík.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucharík, M., Korenko, M., Janičkovič, D. et al. Rapid solidification of cryolite and cryolite–alumina melts. Monatsh Chem 141, 7–13 (2010). https://doi.org/10.1007/s00706-009-0229-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0229-0

Keywords

Navigation