Skip to main content
Log in

Long-term structural surface modifications of mixed conducting La2NiO4+δ at high temperatures

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

Long-term annealing of La2NiO4+δ single crystals at 1,273 K in air leads to the formation of nickel-rich Ruddlesden–Popper phases at the single-crystal surfaces. Both the composition and the morphology of these phases depend on the surface orientation; whereas only crystallites of La4Ni3O10−δ were observed on (001) surfaces, both La3Ni2O7−δ and La4Ni3O10−δ were formed on (100) surfaces. The formation of the nickel-rich RP phases is believed to be due to surface segregation of nickel or evaporation of a volatile lanthanum species. The crystallographic (001) planes inside the La3Ni2O7−δ and La4Ni3O10−δ crystallites were found to be oriented in the direction of preferential crystallite growth, which indicates that the diffusion of lanthanum and nickel cations is faster along the crystallographic (001) planes than perpendicular to these planes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Kilner JA, Shaw CKM (2002) Solid State Ionics 523:154

    Google Scholar 

  2. Bassat JM, Odier P, Loup JP (1994) J Solid State Chem 110:124

    Article  CAS  Google Scholar 

  3. Engels S, Modigell M (2006) Desalination 191:291

    Article  Google Scholar 

  4. Bouwmeester HJM (2003) Catal Today 82:141

    Article  CAS  Google Scholar 

  5. Yan A, Maragou V, Arico A, Cheng M, Tsiakaras P (2007) Appl Catal B 76:320

    Article  CAS  Google Scholar 

  6. Yan A, Liu B, Dong Y, Tian Z, Wang D, Cheng M (2008) Appl Catal B 80:24

    Article  CAS  Google Scholar 

  7. Shao Z, Haile S (2004) Nature 431:170

    Article  CAS  Google Scholar 

  8. Arnold M, Wang H, Feldhoff A (2007) J Membr Sci 293:44

    Article  CAS  Google Scholar 

  9. Odier P, Nigara Y, Couture J, Sayer M (1985) J Solid State Chem 56:32

    Article  CAS  Google Scholar 

  10. Drennan J, Tavares CP, Steele BCH (1982) Mater Res Bull 17:621

    Article  CAS  Google Scholar 

  11. Brisi C, Vallino M, Abbattista F (1981) J Less-Common Met 79:215

    Article  CAS  Google Scholar 

  12. Seppanen M (1979) Scand J Metall 8:191

    CAS  Google Scholar 

  13. Byun JD, Kim JK, Kim SH, Song KY (1992) J Korean Ceram Soc 29:41

    CAS  Google Scholar 

  14. Ling CD, Argyriou DN, Wu G, Neumeier JJ (2000) J Solid State Chem 152:517

    Article  CAS  Google Scholar 

  15. Bannikov DO, Cherepanov VA (2006) J Solid State Chem 179:2721

    Article  CAS  Google Scholar 

  16. Bannikov DO, Safronov AP, Cherepanov VA (2006) Thermochim Acta 451:22

    Article  CAS  Google Scholar 

  17. Zinkevich M, Aldinger F (2004) J Alloys Compd 375:147

    Article  CAS  Google Scholar 

  18. Kitayama K (1990) J Solid State Chem 87:165

    Article  CAS  Google Scholar 

  19. Zinkevich M, Solak N, Nitsche H, Ahrens M, Aldinger F (2007) J Alloys Compd 438:92

    Article  CAS  Google Scholar 

  20. Demourgues A, Weill F, Grenier JC, Wattiaux A, Pouchard M (1992) Physica C 192:425

    Article  CAS  Google Scholar 

  21. Demourgues A, Weill F, Darriet B, Wattiaux A, Grenier JC, Gravereau P, Pouchard M (1993) J Solid State Chem 106:330

    Article  CAS  Google Scholar 

  22. Zhang Z, Greenblatt M, Goodenough JB (1994) J Solid State Chem 108:402

    Article  CAS  Google Scholar 

  23. Zhang Z, Greenblatt M (1995) J Solid State Chem 117:236

    Article  CAS  Google Scholar 

  24. Amow G, Davidson IJ, Skinner SJ (2006) Solid State Ionics 177:1205

    Article  CAS  Google Scholar 

  25. Paulus W, Cousson A, Dhalenne G, Berthon J, Revcolevschi A, Hosoya S, Treutmann W, Heger G, Le Toquin R (2002) Solid State Sci 4:565

    Article  CAS  Google Scholar 

  26. Hayashi A, Tamura H, Ueda Y (1993) Physica C 216:77

    Article  CAS  Google Scholar 

  27. Carvalho ML, Costa FMA, Pereira IS, Wattiaux A, Bassat JM, Grenier JC, Pouchard M (1997) J Mater Chem 7:2107

    Article  CAS  Google Scholar 

  28. Amow G, Whitfield P, Davidson I, Hammond RP, Munnings CN, Skinner SJ (2004) Ceram Int 30:1635

    Article  CAS  Google Scholar 

  29. Sayagues MJ, Vallet-Regí M, Hutchison JL, González-Calbet JM (1996) J Solid State Chem 125:133

    Article  CAS  Google Scholar 

  30. Hiroi Z, Obata T, Takano M, Bando Y (1990) Phys Rev B 41:11665

    Article  CAS  Google Scholar 

  31. Hiroi Z, Takano M, Bando Y (1991) Supercond Sci Technol 4:S139

    Article  CAS  Google Scholar 

  32. Fontaine ML, Laberty-Robert C, Barnabe A, Ansart F, Tailhades P (2004) Ceram Int 30:2087

    Article  CAS  Google Scholar 

  33. Jang WJ, Imai K, Hasegawa M, Takei H (1995) J Crystal Growth 152:158

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for financial support from the Helmholtz Foundation within the HGF research alliance “MEM-Brain.” We thank Mr. F. Dorn for performing the TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schroeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gauquelin, N., Weirich, T.E., Ceretti, M. et al. Long-term structural surface modifications of mixed conducting La2NiO4+δ at high temperatures. Monatsh Chem 140, 1095–1102 (2009). https://doi.org/10.1007/s00706-009-0146-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0146-2

Keywords

Navigation