Skip to main content

Advertisement

Log in

Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

The unique diffusion mechanism in the novel polyatomic anion conductor scandium tungstate is studied by molecular dynamics simulations of systems with artificially induced WO4 2− defects and compared to our previous simulations of defect-free structure models. The diffusion activation energy obtained from structures with built-in defects is smaller than for the defect-free models and in the case of tungstate vacancies close to the experimental value, suggesting that extrinsic tungstate vacancies due to the volatility of WO3 are important for the experimental conductivity. The validity of the force field used for the molecular dynamics simulations is further verified by investigating the orthorhombic to monoclinic phase transition of Sc2(WO4)3 under compression. The lattice compressibility in both phases and the phase transition is qualitatively reproduced, though the simulated phase transition pressure occurred is about 0.55 GPa higher than the experimental one.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Imanaka N, Kobayashi Y, Adachi GY (1995) Chem Lett 24:433−434

    Article  Google Scholar 

  2. Imanaka N, Kobayashi Y, Fujiwara K, Asano T, Okazaki Y, Adachi GY (1998) Chem Mater 10:2006−2012

    Article  CAS  Google Scholar 

  3. Köhler J, Imanaka N, Adachi G (1999) Z Anorg Allg Chem 625:1890−1896

    Article  Google Scholar 

  4. Köhler J, Imanaka N, Adachi GY (1999) J Mater Chem 9:1357−1362

    Article  Google Scholar 

  5. Kobayashi Y, Egawa T, Tamura S, Imanaka N, Adachi GY (1997) Chem Mater 9:1649−1654

    Article  CAS  Google Scholar 

  6. Kobayashi Y, Egawa T, Okazaki Y, Tamura S, Imanaka I, Adachi G (1998) Solid State Ion 111:59−65

    Article  CAS  Google Scholar 

  7. Tamura S, Egawa T, Okazaki Y, Kobayashi Y, Imanaka N, Adachi G (1998) Chem Mater 10:1958−1962

    Article  CAS  Google Scholar 

  8. Adachi G, Köhler J, Imanaka N (1999) Electrochemistry 67:744−751

    CAS  Google Scholar 

  9. Imanaka N, Kobayashi Y, Tamura S, Adachi G (2000) Solid State Ion 136:319−324

    Article  Google Scholar 

  10. Kulikova T, Neiman A, Kartavtseva A, Edwards D, Adams S (2008) Solid State Ion 178:1714−1718

    Article  CAS  Google Scholar 

  11. Driscoll DJ, Islam MS, Slater PR (2005) Solid State Ion 176:539−546

    Article  CAS  Google Scholar 

  12. Evans JSO, Mary TA, Sleight AW (1998) J Solid State Chem 137:148−160

    Article  CAS  Google Scholar 

  13. Evans JSO (1999) J Chem Soc Dalton 3317−3326

  14. Evans JSO, Mary TA, Sleight AW (1997) J Solid State Chem 133:580−583

    Article  CAS  Google Scholar 

  15. Forster PM, Yokochi A, Sleight AW (1998) J Solid State Chem 140:157−158

    Article  CAS  Google Scholar 

  16. Sumithra S, Tyagi AK, Umarji AM (2005) Mater Sci Eng B 116:14−18

    Article  Google Scholar 

  17. Zhou YK, Adams S, Rao RP, Edwards DD, Neiman A, Pestereva N (2008) Chem Mater 20:6335−6345

    Article  CAS  Google Scholar 

  18. Andersen NH, Bandaranayake P, Careem MA, Dissanayake M, Wijayasekera CN, Kaber R, Lunden A, Mellander BE, Nilsson L, Thomas JO (1992) Solid State Ion 57:203−209

    Article  CAS  Google Scholar 

  19. Jansen M (1991) Angew Chem Int Ed Engl 30:1547−1558

    Article  Google Scholar 

  20. Lunden A (1988) Solid State Commun 65:1237−1240

    Article  CAS  Google Scholar 

  21. Varga T, Wilkinson AP, Jorgensen JD, Short S (2006) Solid State Sci 8:289−295

    Article  CAS  Google Scholar 

  22. Garg N, Murli C, Tyagi AK, Sharma SM (2005) Phys Rev B 72. Art. No. 064106

  23. Laaksonen L (1992) J Mol Graph 10:33−34

    Article  CAS  Google Scholar 

  24. Materials Studio, version 4.2 (2007) Accelrys Inc., San Diego

  25. Cerius2, version 4.9 (2003) Accelrys Inc., San Diego

Download references

Acknowledgments

Financial support by A-Star SERC to the Materials World network project no. 062 119 0009 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Adams.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, Y., Prasada Rao, R. & Adams, S. Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides. Monatsh Chem 140, 1017–1023 (2009). https://doi.org/10.1007/s00706-009-0140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0140-8

Keywords

Navigation