Skip to main content

Soft matter lithium salt electrolytes: ion conduction and application to rechargeable batteries

Abstract

Abstract

Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Tarascon JM, Armand M (2001) Nature 414:359–367

    Article  CAS  Google Scholar 

  2. Guo YG, Hu JS, Wan LJ (2008) Adv Mater 20:2878–2887

    Article  CAS  Google Scholar 

  3. Bruce PG, Scrosati B, Tarascon JM (2008) Angew Chem Int Ed 47:2930–2946

    Article  CAS  Google Scholar 

  4. Winter M, Brodd RJ (2004) Chem Rev 104:4245–4270

    Article  Google Scholar 

  5. Niklasson GA, Granqvist CG (2007) J Mater Chem 17:127–156

    Article  CAS  Google Scholar 

  6. Choy JH, Kim YI, Kim BW, Park NG, Campet G, Grenier JC (2000) Chem Mater 12:2950–2956

    Article  CAS  Google Scholar 

  7. Duluard S (2008) New polymer electrolytes membranes based on lithium conductive ionic liquids for all plastic flexible eletrochromic devices. Thesis, Université Bordeaux 1, Bordeaux

  8. Lu W, Fadeev AG, Qi B, Smela E, Mattes BR, Ding J, Spinks GM, Mazurkiewicz J, Zhou D, Wallace GG, Macfarlane DR, Forsyth SA, Forsyth M (2002) Science 297:983–987

    Article  CAS  Google Scholar 

  9. Arico AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nat Mater 4:366–377

    Article  CAS  Google Scholar 

  10. Xu K (2004) Chem Rev 104:4303–4417

    Article  CAS  Google Scholar 

  11. West AR (1995) In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, p 7–42

    Google Scholar 

  12. Barthel J, Gores HJ (1999) In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, p 457–497

    Google Scholar 

  13. Fenton DE, Parker JM, Wright PV (1973) Polymer 14:589

    Article  CAS  Google Scholar 

  14. Shriver DF, Bruce PG (1995) In: Bruce PG (ed) Solid state electrochemistry. Cambridge University Press, Cambridge, p 95–118

    Google Scholar 

  15. Gray FM, Armand M (1999) In: Besenhard JO (ed) Handbook of battery materials. Wiley-VCH, Weinheim, p 499–523

    Google Scholar 

  16. Ratner MA, Shriver DF (1988) Chem Rev 88:109–124

    Article  CAS  Google Scholar 

  17. Huang X, Chen L, Schoonmann J (1993) J Power Sources 44:487–492

    Article  CAS  Google Scholar 

  18. Macfarlane DR, Huang J, Forsyth M (2001) Adv Mater 13:957–966

    Article  CAS  Google Scholar 

  19. Long S, MacFarlane DR, Forsyth M (2003) Solid State Ion 161:105–112

    Article  CAS  Google Scholar 

  20. Alarco PJ, Abu-Lebdeh Y, Abouimrane A, Armand M (2004) Nat Mater 3:476–481

    Article  CAS  Google Scholar 

  21. Dai Q, Macfarlane DR, Howlett PC, Forsyth M (2005) Angew Chem 117:317–320

    Article  Google Scholar 

  22. Wang P, Dai Q, Zakeeruddin SM, Forsyth M, Macfarlane DR, Graetzel M (2004) J Am Chem Soc 126:13590–13591

    Article  CAS  Google Scholar 

  23. Abouimrane A, Abu-Lebdeh Y, Alarco Pierre-Jean, Armand Michel (2004) J Electrochem Soc 151:A1028–A1031

    Article  CAS  Google Scholar 

  24. Abouimrane A, Whitfield P, Niketic S, Davidson I (2007) J Power Sources 174:883–888

    Article  CAS  Google Scholar 

  25. Abouimrane A, Davidson IJ (2007) J Electrochem Soc 154:A1031–A1034

    Article  CAS  Google Scholar 

  26. Tiyapiboonchaiya C, Macfarlane DR, Sun J, Forsyth M (2002) Macromol Chem Phys 203:1906–1911

    Article  CAS  Google Scholar 

  27. Kreuer K-D, Paddison SJ, Spohr E, Schuster M (2004) Chem Rev 104:4637–4678

    Article  CAS  Google Scholar 

  28. Fan L-Z, Hu Y-S, Bhattacharyya AJ, Maier J (2007) Adv Funct Mater 17:2800–2807

    Article  CAS  Google Scholar 

  29. Fan L-Z, Wang X-L, Long F, Wang X (2008) Solid State Ion 179:1772–1775

    Article  CAS  Google Scholar 

  30. Fan L-Z, Wang X-L, Long F (2009) J Power Sources (in press)

  31. Gadjourova Z, Andreev YG, Tunstall DP, Bruce PG (2001) Nature 412:520–523

    Article  CAS  Google Scholar 

  32. Christie AM, Lilley SJ, Staunton E, Andreev UG, Bruce PG (2005) Nature 433:50–53

    Article  CAS  Google Scholar 

  33. Zhang C, Andreev YG, Bruce PG (2007) Angew Chem Int Ed 46:2848–2850

    Article  CAS  Google Scholar 

  34. Galínski M, Lewandowski A, Stepniak I (2006) Electrochim Acta 51:5567–5580

    Article  Google Scholar 

  35. Shin JH, Henderson WA, Passerini S (2003) Electrochem Commun 5:1016–1020

    Article  CAS  Google Scholar 

  36. Appetecchi GB, Aihara Y, Scrosati B (2004) Solid State Ion 170:63–72

    Article  CAS  Google Scholar 

  37. Wang Y, Zaghib K, Guerfi A, Bazito FFC, Torresi RM, Dahn JR (2007) Electrochim Acta 52:6346–6352

    Article  CAS  Google Scholar 

  38. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nature 394:456–458

    Article  CAS  Google Scholar 

  39. Croce F, Settimi L, Scrosati B (2006) Electrochem Commun 8:364–368

    Article  CAS  Google Scholar 

  40. Wieczorek W, Raducha D, Zalewska A, Stevens JR (1998) J Phys Chem B 102:8725–8731

    Article  CAS  Google Scholar 

  41. Bhattacharyya AJ, Maier J (2004) Adv Mater 16:811–814

    Article  CAS  Google Scholar 

  42. Bhattacharyya AJ, Maier J (2004) Electrochem Solid State Lett 7:A432–A434

    Article  CAS  Google Scholar 

  43. Bhattacharyya AJ, Maier J, Bock R, Lange FF (2006) Solid State Ion 177:2565–2568

    Article  CAS  Google Scholar 

  44. Edwards WV, Bhattacharyya AJ, Chadwick AV, Maier J (2006) Electrochem Solid State Lett 9:A564–A567

    Article  CAS  Google Scholar 

  45. Balaya P, Bhattacharyya AJ, Jamnik J, Zhukovskii YF, Kotomin EA, Maier J (2006) J Power Sources 159:171–178

    Article  CAS  Google Scholar 

  46. Patel M, Chandrappa KG, Bhattacharyya AJ (2008) Electrochim Acta 54:209–215

    Article  CAS  Google Scholar 

  47. Patel M, Bhattacharyya AJ (2008) Electrochem Commun 10:1912–1915

    Article  CAS  Google Scholar 

  48. Bhattacharyya AJ, Fleig J, Guo YG, Maier J (2005) Adv Mater 17:2630–2634

    Article  CAS  Google Scholar 

  49. Sherwood J (1979) In: Sherwood J (ed) The plastically crystalline state. Wiley, London, pp 39–83

    Google Scholar 

  50. Maier J (1995) Prog Solid State Chem 23:171–263 (and references therein)

    Google Scholar 

  51. Jarosik A, Kaskhedikar N, Traub U, Bunde A, Maier J (2008) Conductivity and stability of particle networks in liquids. In: Int Workshop on Fundamentals of Lithium-Based Batteries, Schloss Ringberg, Tegernsee, Germany, 23–28 Nov 2008

  52. Das S, Bhattacharyya AJ (2009) J Phys Chem (accepted)

  53. Bunde A, Dieterich W (2000) J Electroceram 5:81–98

    Google Scholar 

  54. Bunde A, Dieterich W, Roman HE (1985) Phys Rev Lett 55:5–8

    Google Scholar 

  55. Maier J (2005) Nat Mater 4:805–815

    Google Scholar 

  56. Das S, Prathap SJ, Menezes PV, Guru Row TN, Bhattacharyya AJ (2009) J Phys Chem B (accepted)

  57. Ratnakumar BV, Smart MC (2007) In: Brousely M, Pistoia G (eds) Industrial applications of batteries: from cars to aerospace and energy storage. Elsevier, Amsterdam, pp 327–392

  58. Dominko R, Gaberscek M, Drofenik J, Bele M, Pejovnik S, Jamnik J (2003) J Power Sources 119:770–773

    Google Scholar 

  59. Guerfi A, Sévigny S, Lagacé M, Hovington P, Kinoshita K, Zaghib K (2003) J Power Sources 119–121:88–94

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the assistance of Prof. M.K. Surappa (Materials Engineering, IISc, Bangalore) and Mr. S. Pandit (Materials Engineering, IISC, Bangalore) for the tensile testing of plastic-polymer composites, Mr. I.S. Jarali (SSCU) for his technical support regarding DSC, FTIR and BET measurements, U. Traub (MPI-FKF Stuttgart, Germany) for technical discussions in relation to impedance spectroscopy, C. Panitz, Chemetall Gmbh., Germany, for the LiClO4, and Morita Chemical Company, Japan, for the LiTFSI. The authors thank Dr. R. Dominko and Dr. M. Gaberscek, National Institute of Chemistry, Ljubljana, Slovenia for the C-LiFePO4 samples. MP and SKD, respectively, thank CSIR (New Delhi, India) and IISc (Bangalore, India) for JRF. AJB thanks DST, Government of India (New Delhi, India), for research funding. Finally, AJB is extremely grateful to Prof. J. Maier, MPI-FKF (Stuttgart, Germany), for continuing to provide the inspiration to pursue research related to soft matter ionics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aninda Jiban Bhattacharyya.

Additional information

M. Patel and S. K. Das have contributed equally to the work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bhattacharyya, A.J., Patel, M. & Das, S.K. Soft matter lithium salt electrolytes: ion conduction and application to rechargeable batteries. Monatsh Chem 140, 1001–1010 (2009). https://doi.org/10.1007/s00706-009-0132-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0132-8

Keywords

  • Ionic conductivity
  • Soft matter
  • Composite electrolyte
  • Heterogeneous doping
  • Oxide particles
  • Plastic crystal
  • Lithium battery