Skip to main content
Log in

Highly resistive intergranular phases in solid electrolytes: an overview

  • Review Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Abstract

The siliceous intergranular phase in acceptor-doped zirconia and ceria and its effect on the ionic conduction across the grain boundaries were reviewed. Not only the abundant siliceous intergranular liquid phase, but also the monolayer-level siliceous intergranular segregation significantly deteriorates the grain-boundary conduction. To decrease the harmful effect of the resistive siliceous phase at the grain boundary, ‘additive scavenging’ or ‘precursor scavenging’ can be employed. The former involves the addition of a secondary phase or another acceptor material with a very high chemical affinity for the siliceous phase, while the latter involves the intergranular phase changing from having a continuous (blocking) configuration to having a discrete (non-blocking) configuration. The mechanisms of various scavenging reactions have been explained, compared, and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Clarke DR (1999) J Am Ceram Soc 82:485

    Article  CAS  Google Scholar 

  2. Huybrechts B, Ishizaki K, Takata M (1995) J Mater Sci 30:2463

    Article  CAS  Google Scholar 

  3. Puin W, Rodewald S, Ramlau R, Hetijans P, Maier J (2000) Solid State Ionics 131:159

    Article  CAS  Google Scholar 

  4. Puin W, Hetihans P (1995) Nanostruct Mater 6:885

    Article  Google Scholar 

  5. Rodewald S, Maier J, Fleig J (2001) J Am Ceram Soc 84:521

    Article  CAS  Google Scholar 

  6. Lee SB, Lee JH, Cho PS, Kim DY, Sigle W, Phillipp F (2007) Adv Mater 19:391

    Article  CAS  Google Scholar 

  7. Bauerle JE (1969) J Phys Chem Solids 30:2657

    Article  CAS  Google Scholar 

  8. Adams TB, Sinclair DC, West AR (2002) Adv Mater 14:1321

    Article  CAS  Google Scholar 

  9. Vollman M, Waser R (1994) J Am Ceram Soc 77:235

    Article  CAS  Google Scholar 

  10. Fleig J, Rodewald S, Maier J (2000) Solid State Ionics 136:905

    Article  Google Scholar 

  11. Lee JS, Chung TJ, Kim DY (2000) Solid State Ionics 136:39

    Article  Google Scholar 

  12. Lei Y, Ito Y, Browning ND, Mazanec TJ (2002) J Am Ceram Soc 85:2359

    Article  CAS  Google Scholar 

  13. Ikuhara Y, Thavorniti P, Sakuma T (1997) Acta Mater 45:5275

    Article  CAS  Google Scholar 

  14. Guo X (1995) Solid State Ionics 81:235

    Article  CAS  Google Scholar 

  15. Guo X, Sigle W, Maier J (2003) J Am Ceram Soc 86:77

    Article  CAS  Google Scholar 

  16. Guo X, Sigle W, Fleig J, Maier J (2002) Solid State Ionics 154:555

    Article  Google Scholar 

  17. Beekman NM, Heyne L (1976) Electrochim Acta 21:303

    Article  Google Scholar 

  18. Badwal SPS, Ciacchi FT, Rajendran S, Drennan J (1998) Solid State Ionics 109:167

    Article  CAS  Google Scholar 

  19. Gerhardt R, Nowick AS (1986) J Am Ceram Soc 69:641

    Article  CAS  Google Scholar 

  20. Gerhardt R, Nowick AS, Mochel ME, Dumler I (1986) J Am Ceram Soc 69:647

    Article  CAS  Google Scholar 

  21. Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Solid State Sci 6:565

    Article  CAS  Google Scholar 

  22. Jasinski P, Petrovsky V, Suzuki T, Anderson HU (2005) J Electrochem Soc 152:J27

    Article  CAS  Google Scholar 

  23. Guo X, Waser R (2006) Progr Mater Sci 51:151

    Article  CAS  Google Scholar 

  24. De Souza DPE, De Souza MF (1999) J Mater Sci 34:4023

    Article  Google Scholar 

  25. Radford KC, Bratton RJ (1979) J Mater Sci 14:59

    Article  CAS  Google Scholar 

  26. Hodgson SNB, Cawley J, Clubley M (1999) J Mater Process 86:139

    Article  Google Scholar 

  27. Lee JH, Lee JH, Jung YS, Kim DY (2003) J Am Ceram Soc 86:1518

    Article  CAS  Google Scholar 

  28. Sharif AA, Mecartney ML (2003) Acta Mater 51:1633

    Article  CAS  Google Scholar 

  29. Steele BCH (2000) Solid State Ionics 129:95

    Article  CAS  Google Scholar 

  30. Aoki M, Chiang YM, Kosacki I, Lee JR, Tuller H (1996) J Am Ceram Soc 79:1169

    Article  CAS  Google Scholar 

  31. Badwal SPS, Rajendran S (1994) Solid State Ionics 70/71:83

    Article  Google Scholar 

  32. Gödickemeier M, Michel B, Orliukas A, Bohac P, Sasaki K, Gauckler L, Heinrich H, Schwnader P, Kostorz G, Hofmann H, Frei O (1994) J Mater Res 9:1228

    Article  Google Scholar 

  33. Mecartney ML (1987) J Am Ceram Soc 70:54

    Article  CAS  Google Scholar 

  34. Jung YS, Lee JH, Lee JH, Kim DY (2003) J Euro Ceram Soc 23:499

    Article  CAS  Google Scholar 

  35. Lee JH, Lee JH, Kim DY (2002) J Am Ceram Soc 85:1622

    Article  CAS  Google Scholar 

  36. Kim DS, Cho PS, Lee JH, Kim DY, Lee SB (2006) Solid State Ionics 177:2125

    Article  CAS  Google Scholar 

  37. Uchikoshi T, Sakka Y, Hiraga K (1999) J Electroceram 4:113

    Article  CAS  Google Scholar 

  38. Jung YS, Choi JH, Lee JH, Lee JH, Kim DY (2004) Solid State Ionics 175:123

    Article  CAS  Google Scholar 

  39. Lee JH, Jung YS, Woo HS, Chung YC, Kim DY (2004) J Euro Ceram Soc 24:1129

    Article  CAS  Google Scholar 

  40. Lee JH, Kim DK, Kim DY (2008) Solid State Ionics 179:966

    Article  CAS  Google Scholar 

  41. Sato Y, Yamamoto T, Ikuhara Y (2007) J Am Ceram Soc 90:337

    Article  CAS  Google Scholar 

  42. Mondal P, Klein A, Jaegermann HahnH (1999) Solid State Ionics 118:331

    Article  CAS  Google Scholar 

  43. Verkerk MJ, Middelhuis BJ, Burggraaf AJ (1982) Solid State Ionics 6:159

    Article  CAS  Google Scholar 

  44. Badwal SPS, Drennan J (1987) J Mater Sci 22:3231

    Article  CAS  Google Scholar 

  45. Verkerk MJ, Winnubst JA, Burggraaf AJ (1982) J Mater Sci 17:3113

    Article  CAS  Google Scholar 

  46. Radford KC, Bratton RJ (1979) J Mater Sci 14:66

    Article  CAS  Google Scholar 

  47. Rajendran S, Drennan J, Badwal SPS (1987) J Mater Sci Lett 6:1431

    Article  CAS  Google Scholar 

  48. Feighery AJ, Irvine JTS (1999) Solid State Ionics 121:209

    Article  CAS  Google Scholar 

  49. Yuzaki A, Kishimoto A (1999) Solid State Ionics 116:47

    Article  CAS  Google Scholar 

  50. Ji Y, Liu J, Lű Z, Zhao X, He T, Su W (1999) Solid State Ionics 126:277

    Article  CAS  Google Scholar 

  51. Guo X, Tang CQ, Yan RZ (1995) J Euro Ceram Soc 15:25

    Article  Google Scholar 

  52. Miyayama M, Yanagida H, Asada A (1986) Am Ceram Soc Bull 65:660

    CAS  Google Scholar 

  53. Lee JH, Mori T, Li JG, Ikegami T, Komatsu M, Haneda H (2000) Electrochemistry 68:120

    Google Scholar 

  54. Chen XJ, Khor KA, Chan SH, Yu LG (2002) Mater Sci Eng A 335:246

    Article  Google Scholar 

  55. Butler EP, Drennan J (1982) J Am Ceram Soc 65:474

    Article  CAS  Google Scholar 

  56. Oe K, Kikkawa K, Kishimoto A, Nakamura Y, Yanagida H (1996) Solid State Ionics 91:131

    Article  CAS  Google Scholar 

  57. Yuzaki A, Kishimoto A, Nakamura Y (1998) Solid State Ionics 109:273

    Article  CAS  Google Scholar 

  58. Shiratori Y, Tietz F, Buchkremer HP, Stöver D (2003) Solid State Ionics 164:27

    Article  CAS  Google Scholar 

  59. Shiratori Y, Tietz F, Penkalla HJ, He JQ, Shiratori Y, Stöver D (2005) J Power Sources 148:32

    Article  CAS  Google Scholar 

  60. Lee JH, Mori T, Li JG, Ikegami T, Takenouchi S (2001) Ceram Int 27:269

    Article  CAS  Google Scholar 

  61. Chiang YM, Birnie DPIII, Kingery WD (1997) Physical ceramics. Wiley, New York, p 332

    Google Scholar 

  62. Lee JH, Mori T, Li JG, Ikegami T, Komatsu M, Haneda H (2000) J Electrochem Soc 147:2822

    Article  CAS  Google Scholar 

  63. Lee JH, Mori T, Li JG, Ikegami T, Drennan J, Kim DY (2001) J Mater Res 16:2377

    Article  CAS  Google Scholar 

  64. Kanno Y (1989) J Mater Sci 24:2415

    Article  CAS  Google Scholar 

  65. Vilmin G, Komarneni S, Roy R (1987) J Mater Sci 22:3556

    Article  CAS  Google Scholar 

  66. Mori T, Yamamura K, Kobayashi K, Mitamura T (1993) J Mater Sci 28:4970

    Article  CAS  Google Scholar 

  67. Spearing DR (1998) J Am Ceram Soc 81:1964

    Article  CAS  Google Scholar 

  68. Mori T, Yamamura K, Kobayashi K, Mitamura T (1992) J Am Ceram Soc 75:2420

    Article  CAS  Google Scholar 

  69. Ellison AJG, Navrotsky A (1992) J Am Ceram Soc 75:1430

    Article  CAS  Google Scholar 

  70. Lee JH, Mori T, Li JG, Ikegami T, Drennan J, Kim DY (2001) J Am Ceram Soc 84:2734

    Article  CAS  Google Scholar 

  71. Lee JH, Mori T, Li JG, Ikegami T, Drennan J, Kim DY (2002) J Electrochem Soc 149:J35

    Article  CAS  Google Scholar 

  72. Fleig J, Maier J (1999) J Am Ceram Soc 82:3485

    Article  CAS  Google Scholar 

  73. Fleig J, Maier J (1999) J Euro Ceram Soc 19:693

    Article  CAS  Google Scholar 

  74. Jung YS, Lee JH, Lee JH, Kim DY (2003) J Electrochem Soc 150:J49

    Article  CAS  Google Scholar 

  75. Chiang YM, Birnie DPIII, Kingery WD (1997) Physical ceramics. Wiley, New York, p 362

    Google Scholar 

  76. Zhang TS, Ma J, Leng YJ, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 168:187

    Article  CAS  Google Scholar 

  77. Zhang TS, Ma J, Kong LB, Chan SH, Hing P, Kilner JA (2004) Solid State Ionics 167:203

    Article  CAS  Google Scholar 

  78. Zhang TS, Ma Chan SH, Hing P, Kilner JA (2004) J Electrochem Soc 151:J84

    Article  CAS  Google Scholar 

  79. Cho PS, Lee SB, Cho YH, Kim DY, Park HM, Lee JH (2008) J Power Sources 183:518

    Article  CAS  Google Scholar 

  80. Lane JA, Neff JL, Christie GM (2006) Solid State Ionics 177:1911

    Article  CAS  Google Scholar 

  81. Adam KE, Hammou A (1983) Solid State Ionics 9:905

    Google Scholar 

  82. Yahiro H, Ohuchi T, Eguchi K, Arai H (1988) J Mater Sci 23:1036

    Article  CAS  Google Scholar 

  83. Haile SM, West DL, Campbell J (1998) J Mater Res 13:1576

    Article  CAS  Google Scholar 

  84. Cho YH, Cho PS, Auchterlonie G, Kim DK, Lee JH, Kim DY, Park HM, Drennan J (2007) Acta Mater 55:4807

    Article  CAS  Google Scholar 

  85. Chiang YM, Birnie DPIII, Kingery WD (1997) Physical ceramics. Wiley, New York, p 14

    Google Scholar 

  86. Drennan J, Hannink RHJ (1986) J Am Ceram Soc 69:541

    Article  CAS  Google Scholar 

  87. Vogel W (1985) Chemistry of glass. American Ceramic Society, Columbus, p 38

    Google Scholar 

  88. El-Moneim AA, Youssof IM, El-Latif LA (2006) Acta Mater 54:3811

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by KOSEF NRL program grant funded by the Korean government (MEST) (no. R0A-2008-000-20032-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Heun Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, JH. Highly resistive intergranular phases in solid electrolytes: an overview. Monatsh Chem 140, 1081–1094 (2009). https://doi.org/10.1007/s00706-009-0111-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-009-0111-0

Keywords

Navigation