Skip to main content
Log in

B24N24 nanocages: a GIAO density functional theory study of 14N and 11B nuclear magnetic shielding and electric field gradient tensors

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Density functional theory (DFT) calculations were performed to determine boron-11 and nitrogen-14 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) spectroscopy parameters in the three most stable B24N24 fullerenes for the first time. The considered samples were first allowed to relax entirely, and then the NMR and NQR calculations were performed on the geometrically optimized models. The calculations of the 11B and 14N nuclear magnetic shielding tensors and electric field gradient tensors employed the Gaussian 98 software implementation of the gauge-including atomic orbital (GIAO) method using the Becke3, Lee-Yang-Parr (B3LYP) DFT level and 6-311G** and 6-311++G** standard basis sets in each of the three optimized forms, and converted the results to experimentally measurable NMR parameters.The calculated NMR chemical shieldings of the three cages show significant differences, providing a way to identify these clusters. The evaluated NQR parameters of the 11B and 14N nuclei in the clusters are also reported and discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kroto HW, Heath JR, O’Brien SC, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Dresselhaus M, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, New York

  3. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  4. Oku T, Hirano T, Kuno M, Kusunose T, Niihara K, Suganuma K (2000) Mater Sci Eng B 74:206

    Google Scholar 

  5. Berber S, Kwon YK, Tomanek D (2000) Phys Rev Lett 84:4613

    Article  CAS  Google Scholar 

  6. Mintmire JW, Dunlap BI, White CT (1992) Phy Rev Lett 68:63

    Google Scholar 

  7. Saito R, Fujita M, Dresselhaus MS, Dresselhaus GR (1992) Phy Rev B 46:1804

    Article  CAS  Google Scholar 

  8. Hamada N, Sawada S, Oshiyama A (1992) Phys Rev Lett 68:1579

    Article  CAS  Google Scholar 

  9. Matsuo Y, Tahara K, Nakamura E (2003) Org Lett 18:3181

    Article  Google Scholar 

  10. Basiuk VA (2002) Nano Lett 2:835

    Article  CAS  Google Scholar 

  11. Linert W, Lukovits I (2007) J Chem Inf Model 47:887–890

    Article  CAS  Google Scholar 

  12. Paine RT, Narula CK (1990) Chem Rev 90:73

    Article  CAS  Google Scholar 

  13. Oku T, Hirano T, Kuno M, Kusunose T, Niihare K, Suganuma K (2000) Mater Sci Eng B 74:206

    Article  Google Scholar 

  14. Oku T, Kuno M, Kitahara H, Nartia I (2001) Int J Inorg Mater 3:597

    Article  CAS  Google Scholar 

  15. Kokado S, Harigaya K (2003) Synth Metals 135–136:745

    Article  Google Scholar 

  16. Oku T, Kuno M, Kitahara H, Narita I (2001) Int J Inorg Mater 3:597

    Article  CAS  Google Scholar 

  17. Chopra NG, Luyken RJ, Cherrey K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Science 269:966

    Article  CAS  Google Scholar 

  18. Mickelson W, Aloni S, Han W-Q, Cumings J, Zettl A (2003) Science 300:467

    Article  CAS  Google Scholar 

  19. Narita I, Oku T (2002) Solid State Commun 122:465

    Article  CAS  Google Scholar 

  20. Narita I, Oku T (2003) Diamond Relat Mater 12:1146

    Article  CAS  Google Scholar 

  21. Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diamond Relat Mater 12:1138

    Article  CAS  Google Scholar 

  22. Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Diamond Relat Mater 12:1918

    Article  CAS  Google Scholar 

  23. Alexandre SS, Mazzoni MSC, Chacham H (1999) Appl Phys Lett 75:61

    Article  CAS  Google Scholar 

  24. Pokropivny VV, Skorokhod VV, Oleinik GS, Kurdyumov AV, Bartnitskaya TS, Pokropivny AV, Sisonyuk AG, Sheichenko DM (2000) J Solid State Chem 154:214

    Article  CAS  Google Scholar 

  25. Golberg D, Bando Y, St!ephan O, Kurashima K (1998) Appl Phys Lett 73:2441

    Article  CAS  Google Scholar 

  26. Oku T (2001) J Ceram Soc Jpn 109:S17

    CAS  Google Scholar 

  27. Oku T (2004) J Phys Chem Solids 65:363

    Article  CAS  Google Scholar 

  28. Oku T, Kuno M, Narita I (2002) Diamond Relat Mater 11:940

    Article  CAS  Google Scholar 

  29. Oku T, Nishiwaki A, Narita I, Gonda M (2003) Chem Phys Lett 380:620

    Article  CAS  Google Scholar 

  30. Sun M-L, Slanina Z, Lee S-L (1995) Chem Phys Lett 233:279–283

    Google Scholar 

  31. Wu H-S, Jiao H (2004) Chem Phys Lett 386:369–372

    Google Scholar 

  32. Batista RJC, Mazzoni MSC, Chacham H (2006) Chem Phys Lett 421:246–250

    Google Scholar 

  33. Mileev MA, Kuzmin SM, Parfenyuk VI (2006) J Struct Chem 47(6):1016–1021

    Google Scholar 

  34. Wu H-S, Jiao H (2006) J Mol Model 12:537–542

    Google Scholar 

  35. Seifert G, Fowler RW, Mitchell D, Porezag D, Frauenheim T (1997) Chem Phys Lett 268:352

    Article  CAS  Google Scholar 

  36. Strout DL (2000) J Phys Chem A 104:3364

    Article  CAS  Google Scholar 

  37. Strout DL (2001) J Phys Chem A 105:261

    Article  CAS  Google Scholar 

  38. Sheichenkov DM, Pokropivny AV, Pokropivny VV (2000) Semicond Phys Quant Electron Optoelectron 3(4):545–549

    Google Scholar 

  39. Lan Y-Z, Cheng W-D, Wu D-S, Li X-D, Zhang H, Gong Y-J, Shen J, Li F-F (2005) J Mol Struct (Theochem) 730:9–15

    Google Scholar 

  40. Zope RR, Baruah T, Pederson MR, Dunlap BI (2004) Chem Phys Lett 393:300–304

    Google Scholar 

  41. Zope RR, Dunlap BI (2004) Chem Phys Lett 386:403–407

    Article  CAS  Google Scholar 

  42. Facelli JC, de Dios AC (eds)(1999) Modeling NMR chemical shifts, gaining insights into structure and environment. American Chemical Society, Washington, DC

  43. Das TP, Han EL (1958) Nuclear quadrupole resonance spectroscopy. Academic, New York

  44. Bailey WC (2000) Chem Phys 252:257

    Article  Google Scholar 

  45. Mirzaei M, Hadipour NL (2008) Phys E 40:800–804

    Article  CAS  Google Scholar 

  46. Ditchfield R, Hehre WJ, Pople JA (1972) Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J Chem Phys 54:724–728

    Article  Google Scholar 

  47. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A.7. Gaussian, Inc., Pittsburgh, PA

  48. Alkorta I, Elguero J (2003) Struct Chem 14(4):337

    Article  Google Scholar 

  49. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  51. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650

    Article  CAS  Google Scholar 

  52. Clark T, Chandrasekhar J, PRv Schleyer (1983) J Comp Chem 4:294

    Article  CAS  Google Scholar 

  53. Schindler M, Kutzelnigg W (1983) J Am Chem Soc 105:1360

    Article  CAS  Google Scholar 

  54. Fleischer U, Kutzelnigg W, Bleiber A, Sauer J (1993) J Am Chem Soc 115:7833

    Article  CAS  Google Scholar 

  55. Pyykkö P (2001) Mol Phys 99:1617

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asadollah Boshra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rouzbehani, G.M., Boshra, A. & Seif, A. B24N24 nanocages: a GIAO density functional theory study of 14N and 11B nuclear magnetic shielding and electric field gradient tensors. Monatsh Chem 140, 255–263 (2009). https://doi.org/10.1007/s00706-008-0006-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-008-0006-5

Keywords

Navigation