Skip to main content

Advertisement

Log in

The Potential Energies of Cohesion of a Crystalline Organic Enantiomer and the Racemate; on the Energy for the Liquid Racemate [1]

  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Summary.

The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Branched-Chain Organic Compounds, part 10; part 9: Ref. [13]

  • K Denbigh (1971) The Principles of Chemical Equilibrium Cambridge University Press London 196

    Google Scholar 

  • CK Ingold (1969) Structure and Mechanism in Organic Chemistry Cornell University Press Ithaca 34

    Google Scholar 

  • Herzberg G (1945) Infrared and Raman Spectra of Polyatomic Molecules. Van Nostrand Reinhold, New York a) p 534 (Molecular Vibrations in Liquids and Solids); b) p 509

  • Ros F, Molina MT (1999) Eur J Org Chem 3179

  • Díaz Peña M, Roig Muntaner A (1984) Química Física. Alhambra, Madrid a) vol 2; b) vol 1

  • M Colomina P Jiménez C Turrión (1982) J Chem Thermodynamics 14 779 Occurrence Handle10.1016/0021-9614(82)90174-4 Occurrence Handle1:CAS:528:DyaL38XlvV2jt7s%3D

    Article  CAS  Google Scholar 

  • JE Callanan SA Sullivan (1986) Rev Sci Instrum 57 2584 Occurrence Handle10.1063/1.1139063 Occurrence Handle1:CAS:528:DyaL28Xlsl2ntrY%3D

    Article  CAS  Google Scholar 

  • Roux MV, Jiménez P, Vacas A, Cano FH, Apreda-Rojas MC, Ros F (2003) Eur J Org Chem 2084

  • P Debye (1912) Ann Phys 39 789 Occurrence Handle10.1002/andp.19123441404 Occurrence Handle1:CAS:528:DyaD28XmvFw%3D

    Article  CAS  Google Scholar 

  • Aguilar J (1970) Termodinámica y Mecánica Estadística. Saber, Valencia; Bauman RP (1992) Modern Thermodynamics with Statistical Mechanics. Macmillan, New York

  • InstitutionalAuthorNameLandolt-Börnstein (1961) Zahlenwerte und Funktionen EditionNumber6 NumberInSeries2 Springer Berlin 742

    Google Scholar 

  • F Ros I Barbero (2005) Monatsh Chem Chem Month 136 1607 Occurrence Handle10.1007/s00706-005-0340-9 Occurrence Handle1:CAS:528:DC%2BD2MXpsFeit7g%3D

    Article  CAS  Google Scholar 

  • DN Rihani LK Doraiswamy (1965) Ind Eng Chem Fundam 4 17 Occurrence Handle10.1021/i160013a003 Occurrence Handle1:CAS:528:DyaF2MXjtlKmuw%3D%3D

    Article  CAS  Google Scholar 

  • PE Liley WR Gambill (1973) Prediction and Correlation of Physical Properties RH Perry CH Chilton (Eds) Chemical Engineer’s Handbook McGraw-Hill New York 235

    Google Scholar 

  • A Einstein (1956) Investigations on the Theory of Brownian Movement Dover New York

    Google Scholar 

  • RD Freeman AW Searcy (1954) J Chem Phys 22 762 Occurrence Handle1:CAS:528:DyaG2cXmtlSjug%3D%3D

    CAS  Google Scholar 

  • Benson SW (1982) The Foundations of Chemical Kinetics. Krieger, Malabar a) p 675; b) p 662

  • FA Cotton G Wilkinson (1980) Advanced Inorganic Chemistry Wiley New York 356

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ros.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ros, F., Jiménez, P. & Victoria Roux, M. The Potential Energies of Cohesion of a Crystalline Organic Enantiomer and the Racemate; on the Energy for the Liquid Racemate [1]. Monatsh. Chem. 138, 941–949 (2007). https://doi.org/10.1007/s00706-007-0636-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-007-0636-z

Navigation