Skip to main content
Log in

Potentiometric and Multinuclear Magnetic Resonance Study of the Solution Equilibria Between Aluminium(III) Ion and L-Aspartic Acid

  • Published:
Monatshefte für Chemie / Chemical Monthly Aims and scope Submit manuscript

Summary.

Solution equilibria between aluminium(III) ion and L-aspartic acid were studied by potentiometric, 27Al, 13C, and 1H NMR measurements. Glass electrode equilibrium potentiometric studies were performed on solutions with ligand to metal concentration ratios 1:1, 3:1, and 5:1 with the total metal concentration ranging from 0.5 to 5.0 mmol/dm3 in 0.1 mol/dm3 LiCl ionic medium, at 298 K. The pH of the solutions was varied from ca. 2.0 to 5.0. The non-linear least squares treatment of the data performed with the aid of the Hyperquad program, indicated the formation of the following complexes with the respective stability constants log βp,q,r given in parenthesis (p, q, r are stoichiometric indices for metal, ligand, and proton, respectively): Al(HAsp)2+ (log β1,1,1 = 11.90 ± 0.02); Al(Asp)+ (log β1,1,0 = 7.90 ± 0.03); Al(OH)Asp0 (log β1,1,−1 = 3.32 ± 0.04); Al(OH)2Asp (log β1,1−2 = −1.74 ± 0.08), and Al2(OH) Asp3+ (log β2,1,−1 = 6.30 ± 0.04). 27Al NMR spectra of Al3+ + aspartic acid solutions (pH 3.85) indicate that sharp symmetric resonance at δ∼10 ppm can be assigned to (1, 1, 0) complex. This resonance increases in intensity and slightly broadens upon further increasing the pH. In Al(Asp)+ complex the aspartate is bound tridentately to aluminum. The 1H and 13C NMR spectra of aluminium + aspartic acid solutions at pH 2.5 and 3.0 indicate that β-methylene group undergoes the most pronounced changes upon coordination of aluminum as well as α-carboxylate group in 13C NMR spectrum. Thus, in Al(HAsp)2+ which is the main complex in this pH interval the aspartic acid acts as a bidentate ligand with –COO and –NH2 donors closing a five-membered ring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Special recent issues of the journals devoted to aluminum toxicity and chemistry: J Inorg Biochem (2003) 97: Iss. 1; J Inorg Biochem (2001) 87: Iss. 1-2; J Inorg Biochem (1992) 76: Iss. 2; Coord Chem Rev (2002) 228: Iss. 2; Coord Chem Rev (1996) 149

  • P Nayak (2002) Environ Res A 89 101 Occurrence Handle1:CAS:528:DC%2BD38XltFKitb4%3D Occurrence Handle10.1006/enrs.2002.4352

    Article  CAS  Google Scholar 

  • Gitelman HJ (ed) (1989) Aluminum and Health. A Critical Review, M. Dekker, New York; Van Landeghem FG, De Broe EM, D’Haese CP (1998) Clinical Biochem 31: 385

  • Martell A, Hancock DR, Smith MR, Motekaitis JR (1996) Coord Chem Rev 149: 311; Martell EA, Motekaitis JR, Smith MR (1990) Polyhedron 9: 171

    Google Scholar 

  • Williams JPR (1966) Coord Chem Rev 149: 1; Alfrey CA (1995) Toxicity of Detrimental Metal Ions. Aluminum. In: Berthon G (ed) Handbook of Metal-Ligand Interactions in Biological Fluids, vol 2. Bioinorganic Medicine, M. Dekker, New York, pp 735–740

  • Kiss T, Jakusch T, Kilyen M, Kiss E, Lakatos A (2000) Polyhedron 19: 2389; Orvig C (1993) The Aqueous Coordination Chemistry of Aluminum. In: Robinson HG (ed) Coordination Chemistry of Aluminum, VCH, Weinheim, pp 85–121

  • S Dayde D Champmartin P Rubini G Berthon (2002) Inorg Chim Acta 339 513 Occurrence Handle1:CAS:528:DC%2BD38XosFOks7Y%3D Occurrence Handle10.1016/S0020-1693(02)01046-0

    Article  CAS  Google Scholar 

  • E Kiss E Lakatos I Banyai T Kiss (1998) J Inorg Biochem 69 145 Occurrence Handle1:CAS:528:DyaK1cXjslOqu7g%3D Occurrence Handle10.1016/S0162-0134(97)10011-3

    Article  CAS  Google Scholar 

  • S Dayde V Brumas D Champmartin P Rubini G Berthon (2003) J Inorg Biochem 17 104 Occurrence Handle10.1016/S0162-0134(03)00244-7

    Article  Google Scholar 

  • X Yang Y Tang S Bi G Yang J Hu (2003) Anal Sci 19 133 Occurrence Handle10.2116/analsci.19.133

    Article  Google Scholar 

  • Kiss T, Sovago I, Toth I, Lakatos A, Bertani P, Tapparo A, Bombi G, Bruce Martin R (1997) JCS Dalton Trans 1967

  • Laurie S (1987) Amino Acids, Peptides and Proteins. In: Wilkinson G, Gillard DR, McCleverty AJ (Eds) Coordination Chemistry, Pergamon Press, Oxford pp 739–776; Jakubke DH, Jeshkeit H (1982) Aminosauren, Peptide, Proteine, Akademie Verlag, Berlin; Van der Voet BG (1992) Aluminum in Biology and Medicine, Ciba Foundation Symposium 169. Wiley, Chichester, pp 109–122

  • Ph Charlet PJ Deloume G Duc G Thomas-David (1984) Bull Soc Chim Fr 7–8 222

    Google Scholar 

  • P Gans A Sabatini A Vacca (1996) Talanta 43 1739 Occurrence Handle1:CAS:528:DyaK28XlvVWrsb0%3D Occurrence Handle10.1016/0039-9140(96)01958-3

    Article  CAS  Google Scholar 

  • Gans P, Sabatini A, Vacca A (1985) J Chem Soc Dalton Trans 1195

  • Dayde S (1990) Etude des equilibres de complexation et speciation simulee de la fraction ultrafiltrable de l’aluminium dans le plasma sanguine et la fluide gastro-intestinal. Implications pour la toxicite de l’aluminium. These de Doctorat de l’Universite Paul Sabatier, Toulouse, France

  • P Djurdjevic R Jelic D Dzajevic M Cvijovic (2002) Metal Based Drugs 8 235

    Google Scholar 

  • P Djurdjevic R Jelic (1998) Main Group Metal Chem 21 331 Occurrence Handle1:CAS:528:DyaK1cXkslylsb4%3D

    CAS  Google Scholar 

  • Puigdomenech I (1983) Input, Sed and Predom: Computer programs drawing equilibrium diagrams, Technical report TRITA-OOK-3010. Royal Institute of Technology, Dept Inorg Chem Stockholm

  • WJ Akitt (1989) Prog Nucl Mag Res Spectr 21 1 Occurrence Handle10.1016/0079-6565(89)80001-9

    Article  Google Scholar 

  • Tossell AJ (2001) Geochim Cosmochim Acta 65: 2549; Bertsch PM, Parker RD (1996) Aqueous Polynuclear Aluminum Species. In: Sposito G (ed) The Environmental Chemistry of Aluminum, Lewis Publ., Boca Raton, 2nd Edition, pp 117–168

  • K Perry L Shafran (2001) J Inorg Biochem 87 115 Occurrence Handle1:CAS:528:DC%2BD3MXot1Onu7o%3D Occurrence Handle10.1016/S0162-0134(01)00326-9

    Article  CAS  Google Scholar 

  • OL Ohman S Sjoberg (1996) Coord Chem Rev 149 33 Occurrence Handle10.1016/S0010-8545(96)90010-7

    Article  Google Scholar 

  • Karweer BS, Pillai PB, Iyer KR (1990) Magnetic Res Chem 28: 922; Karweer BS, Pillai PB, Iyer KR, Indian J Chem 30A: 1064

  • Bellamy JL (1975) The Infrared Spectra of Complex Molecules, Vol 1, Chapman and Hall, London, pp 266, 273; Barth A (2000) Prog Biophys Mol Biol 74: 141

  • Schmidbaur H, Bach I, Wilkinson LD, Muller G (1989) Chem Ber 122: 1445; Schmidbaur H, Muller G, Riede J, Manninger G, Helbig J (1986) Angew Chem Int Ed 25: 1013

  • Singhal A, Keefer DK (1994) J Mater Res 9: 1973; Ohman OL, Sjoberg S, Ingri N (1983) Acta Chem Scand Ser A 37: 561; Hedlund T, Sjoberg S, Ohman OL (1987) Acta Chem Scand Ser A 41: 197

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Predrag Djurdjević.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Djurdjević, P., Jelić, R., Joksović, L. et al. Potentiometric and Multinuclear Magnetic Resonance Study of the Solution Equilibria Between Aluminium(III) Ion and L-Aspartic Acid. Monatsh. Chem. 137, 717–735 (2006). https://doi.org/10.1007/s00706-005-0470-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-005-0470-0

Navigation